326 lines
17 KiB
Julia
326 lines
17 KiB
Julia
#!/usr/bin/env julia
|
|
# -*- coding: UTF-8 -*-
|
|
# __author__ = "Max Kannenberg"
|
|
# __copyright__ = "2020-2022"
|
|
# __license__ = "ISC"
|
|
|
|
# Calculate the running time of a train run on a path with special settings with information from the corresponding YAML files with the file paths `trainDirectory`, `pathDirectory`, `settingsDirectory`.
|
|
|
|
# calculate a train run focussing on using the minimum possible running time
|
|
function calculateMinimumRunningTime!(movingSection::Dict, settings::Settings, train::Train)
|
|
CSs::Vector{Dict} = movingSection[:characteristicSections]
|
|
|
|
if settings.massModel == :homogeneous_strip && settings.stepVariable == speed
|
|
println("WARNING: ! ! ! TrainRuns.jl doesn't work reliably for the mass model homogeneous strip with step size v in m/s. The calculation time can be extremely high when calcutlating paths with steep gradients ! ! !")
|
|
end
|
|
|
|
startingPoint = SupportPoint()
|
|
startingPoint[:i] = 1
|
|
startingPoint[:s] = CSs[1][:s_entry]
|
|
calculateForces!(startingPoint, CSs, 1, "default", train, settings.massModel) # traction effort and resisting forces (in N)
|
|
drivingCourse::Vector{Dict} = [startingPoint] # List of support points
|
|
|
|
for csId in 1:length(CSs)
|
|
CS = CSs[csId]
|
|
# for testing
|
|
if drivingCourse[end][:s] != CS[:s_entry]
|
|
println("ERROR: In CS", csId," the train run starts at s=",drivingCourse[end][:s]," and not s_entry=",CS[:s_entry])
|
|
end
|
|
if drivingCourse[end][:v] > CS[:v_entry]
|
|
println("ERROR: In CS", csId," the train run ends with v=",drivingCourse[end][:v]," and not with v_entry=",CS[:v_entry])
|
|
end
|
|
|
|
# determine the different flags for switching between the states for creating moving phases
|
|
s_braking = brakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
|
|
calculateForces!(drivingCourse[end], CSs, CS[:id], "default", train, settings.massModel) # tractive effort and resisting forces (in N)
|
|
|
|
previousSpeedLimitReached = false
|
|
stateFlags = Dict(:endOfCSReached => drivingCourse[end][:s] > CS[:s_exit],
|
|
:brakingStartReached => drivingCourse[end][:s] + s_braking == CS[:s_exit],
|
|
:tractionDeficit => drivingCourse[end][:F_T] < drivingCourse[end][:F_R], # or add another flag for equal forces?
|
|
:resistingForceNegative => drivingCourse[end][:F_R] < 0.0,
|
|
:previousSpeedLimitReached => false, #speedLimitReached, # check already at this position?
|
|
:speedLimitReached => drivingCourse[end][:v] > CS[:v_limit],
|
|
:error => false)
|
|
|
|
# determine the behavior sections for this characteristic section. It has to be at least one of those BS: "breakFree", "clearing", "accelerating", "cruising", "diminishing", "coasting", "braking" or "halt")
|
|
while !stateFlags[:endOfCSReached] # s < s_exit
|
|
if !stateFlags[:brakingStartReached] # s+s_braking < s_exit
|
|
if !stateFlags[:tractionDeficit]
|
|
if drivingCourse[end][:F_T] > drivingCourse[end][:F_R] && drivingCourse[end][:v] == 0.0
|
|
(CS, drivingCourse, stateFlags) = addBreakFreeSection!(CS, drivingCourse, stateFlags, settings, train, CSs)
|
|
|
|
elseif stateFlags[:previousSpeedLimitReached]
|
|
(CS, drivingCourse, stateFlags) = addClearingSection!(CS, drivingCourse, stateFlags, settings, train, CSs)
|
|
|
|
elseif drivingCourse[end][:F_T] > drivingCourse[end][:F_R] && !stateFlags[:speedLimitReached]
|
|
(CS, drivingCourse, stateFlags) = addAcceleratingSection!(CS, drivingCourse, stateFlags, settings, train, CSs)
|
|
|
|
elseif drivingCourse[end][:F_T] == drivingCourse[end][:F_R] && !stateFlags[:speedLimitReached]
|
|
# cruise only one step
|
|
if settings.stepVariable == :distance
|
|
s_cruising = settings.stepSize
|
|
elseif settings.stepVariable == time
|
|
s_cruising = Δs_with_Δt(settings.stepSize, drivingCourse[end][:a], drivingCourse[end][:v])
|
|
elseif settings.stepVariable == velocity
|
|
s_cruising = train.length/(10.0) # TODO which step size should be used?
|
|
end
|
|
(CS, drivingCourse, stateFlags) = addCruisingSection!(CS, drivingCourse, stateFlags, s_cruising, settings, train, CSs, "cruising")
|
|
|
|
elseif drivingCourse[end][:F_R] < 0 && stateFlags[:speedLimitReached]
|
|
s_braking = brakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
|
|
s_cruising = CS[:s_exit] - drivingCourse[end][:s] - s_braking
|
|
|
|
if s_cruising > 0.0
|
|
(CS, drivingCourse, stateFlags) = addCruisingSection!(CS, drivingCourse, stateFlags, s_cruising, settings, train, CSs, "downhillBraking")
|
|
else
|
|
stateFlags[:brakingStartReached] = true
|
|
end
|
|
|
|
elseif drivingCourse[end][:F_T] == drivingCourse[end][:F_R] || stateFlags[:speedLimitReached]
|
|
s_braking = brakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
|
|
s_cruising = CS[:s_exit] - drivingCourse[end][:s] - s_braking
|
|
|
|
if s_cruising > 0.0 # TODO: define a minimum cruising length?
|
|
(CS, drivingCourse, stateFlags) = addCruisingSection!(CS, drivingCourse, stateFlags, s_cruising, settings, train, CSs, "cruising")
|
|
else
|
|
stateFlags[:brakingStartReached] = true
|
|
end
|
|
else
|
|
error()
|
|
end
|
|
elseif stateFlags[:tractionDeficit]
|
|
(CS, drivingCourse, stateFlags) = addDiminishingSection!(CS, drivingCourse, stateFlags, settings, train, CSs)
|
|
|
|
else
|
|
error()
|
|
end
|
|
else#if !stateFlags[:endOfCSReached] # s < s_exit
|
|
(CS, drivingCourse, stateFlags) = addBrakingSection!(CS, drivingCourse, stateFlags, settings, train, CSs)
|
|
#else
|
|
# error()
|
|
end
|
|
end
|
|
#if s == s_exit
|
|
# halt
|
|
#end
|
|
|
|
|
|
# for testing:
|
|
if drivingCourse[end][:s] != CS[:s_exit]
|
|
println("ERROR: In CS", csId," the train run ends at s=",drivingCourse[end][:s]," and not s_exit=",CS[:s_exit])
|
|
end
|
|
if drivingCourse[end][:v] > CS[:v_exit]
|
|
println("ERROR: In CS", csId," the train run ends with v=",drivingCourse[end][:v]," and not with v_exit=",CS[:v_exit])
|
|
end
|
|
end #for
|
|
|
|
(CSs[end], drivingCourse) = addHalt!(CSs[end], drivingCourse, settings, train, CSs)
|
|
|
|
movingSection[:t] = drivingCourse[end][:t] # total running time (in s)
|
|
|
|
return (movingSection, drivingCourse)
|
|
end #function calculateMinimumRunningTime
|
|
|
|
|
|
"""
|
|
calculateTractiveEffort(v, tractiveEffortVelocityPairs)
|
|
|
|
Calculate the trains tractive effort with the `tractiveEffortVelocityPairs` dependend on the velocity `v`.
|
|
|
|
...
|
|
# Arguments
|
|
- `v::AbstractFloat`: the current velocity in m/s.
|
|
- `tractiveEffortVelocityPairs::Array{}`: the trains pairs for velocity in m/s and tractive effort in N as one array containing an array for each pair.
|
|
...
|
|
|
|
# Examples
|
|
```julia-repl
|
|
julia> calculateTractiveEffort(20.0, [(0.0, 180000), (20.0, 100000), (40.0, 60000), (60.0, 40000), (80.0, 30000)])
|
|
100000
|
|
|
|
julia> calculateTractiveEffort(30.0, [(0.0, 180000), (20.0, 100000), (40.0, 60000), (60.0, 40000), (80.0, 30000)])
|
|
80000
|
|
```
|
|
"""
|
|
function calculateTractiveEffort(v::AbstractFloat, tractiveEffortVelocityPairs::Array{})
|
|
if v < 0.0
|
|
#println("v=",v)
|
|
return 0.0
|
|
end
|
|
|
|
for row in 1:length(tractiveEffortVelocityPairs)
|
|
nextPair = tractiveEffortVelocityPairs[row]
|
|
if nextPair[1] == v
|
|
return nextPair[2]
|
|
elseif nextPair[1] > v
|
|
# interpolate for a straight line between the two surrounding points with the formula: F=(v-v_(row-1))*(F_row-F_(row-1))/(v_row-v_(row-1))+F_(row-1)
|
|
previousPair = tractiveEffortVelocityPairs[row-1]
|
|
F_T_interpolation = (v-previousPair[1]) * (nextPair[2]-previousPair[2]) / (nextPair[1]-previousPair[1]) + previousPair[2]
|
|
return F_T_interpolation
|
|
end #if
|
|
end #for
|
|
# if v gets higher than the velocities in tractiveEffortVelocityPairs the last tractive effort will be used
|
|
# TODO: also an extrapolation could be used
|
|
return tractiveEffortVelocityPairs[end][2]
|
|
end #function calculateTractiveEffort
|
|
|
|
|
|
"""
|
|
calculate and return the path resistance dependend on the trains position and mass model
|
|
"""
|
|
function calculatePathResistance(CSs::Vector{Dict}, csId::Integer, s::Real, massModel, train::Train)
|
|
|
|
if massModel == :mass_point
|
|
pathResistance = forceFromCoefficient(CSs[csId][:r_path], train.m_train_full)
|
|
elseif massModel == :homogeneous_strip
|
|
pathResistance = 0.0
|
|
s_rear = s - train.length # position of the rear of the train
|
|
while csId > 0 && s_rear < CSs[csId][:s_exit]
|
|
pathResistance = pathResistance + (min(s, CSs[csId][:s_exit]) - max(s_rear, CSs[csId][:s_entry])) / train.length * forceFromCoefficient(CSs[csId][:r_path], train.m_train_full)
|
|
csId = csId-1
|
|
if csId == 0
|
|
# TODO: currently for values < movingSection[:s_entry] the values of movingSection[:s_entry] will be used
|
|
return pathResistance + (CSs[1][:s_entry] - s_rear) / train.length * forceFromCoefficient(CSs[1][:r_path], train.m_train_full)
|
|
end #if
|
|
end #while
|
|
end #if
|
|
|
|
return pathResistance
|
|
end #function calculatePathResistance
|
|
|
|
|
|
"""
|
|
calculate and return tractive and resisting forces for a support point
|
|
"""
|
|
function calculateForces!(supportPoint::Dict, CSs::Vector{Dict}, csId::Integer, bsType::String, train::Train, massModel)
|
|
# calculate resisting forces
|
|
supportPoint[:R_traction] = tractionUnitResistance(supportPoint[:v], train)
|
|
if train.transportType == :freight
|
|
supportPoint[:R_wagons] = freightWagonsResistance(supportPoint[:v], train)
|
|
elseif train.transportType == :passenger
|
|
supportPoint[:R_wagons] = passengerWagonsResistance(supportPoint[:v], train)
|
|
end
|
|
supportPoint[:R_train] = supportPoint[:R_traction] + supportPoint[:R_wagons]
|
|
supportPoint[:R_path] = calculatePathResistance(CSs, csId, supportPoint[:s], massModel, train)
|
|
supportPoint[:F_R] = supportPoint[:R_train] + supportPoint[:R_path]
|
|
|
|
# calculate tractive effort
|
|
if bsType == "braking" || bsType == "coasting" || bsType == "halt"
|
|
supportPoint[:F_T] = 0.0
|
|
elseif bsType == "cruising"
|
|
supportPoint[:F_T] = min(max(0.0, supportPoint[:F_R]), calculateTractiveEffort(supportPoint[:v], train.tractiveEffort))
|
|
else # bsType == "accelerating" || bsType == "diminishing" || 'default'
|
|
supportPoint[:F_T] = calculateTractiveEffort(supportPoint[:v], train.tractiveEffort)
|
|
end
|
|
|
|
return supportPoint
|
|
end #function calculateForces!
|
|
|
|
|
|
"""
|
|
TODO
|
|
"""
|
|
function moveAStep(previousPoint::Dict, stepVariable::Symbol, stepSize::Real, csId::Integer)
|
|
# stepSize is the currentStepSize depending on the accessing function
|
|
# TODO: csId is only for error messages. Should it be removed?
|
|
#= 08/31 TODO: How to check if the train stopps during this step? I should throw an error myself that I catch in higher hierarchies. =#
|
|
|
|
# create the next support point
|
|
newPoint = SupportPoint()
|
|
newPoint[:i] = previousPoint[:i]+1 # identifier
|
|
|
|
# calculate s, t, v, E
|
|
if stepVariable == :distance # distance step method
|
|
Δs = stepSize # step size (in m)
|
|
if previousPoint[:a] == 0.0
|
|
if previousPoint[:v] == 0.0
|
|
error("ERROR: The train tries to cruise at v=0.0 m/s at s=",previousPoint[:s]," in CS",csId,".")
|
|
end
|
|
Δt = Δt_with_constant_v(Δs, previousPoint[:v]) # step size (in s)
|
|
Δv = 0.0 # step size (in m/s)
|
|
else
|
|
# check if the parts of the following square roots will be <0.0 in the functions Δt_with_Δs and Δv_with_Δs
|
|
squareRootPartIsNegative = (previousPoint[:v]/previousPoint[:a])^2+2*Δs/previousPoint[:a] < 0.0 || previousPoint[:v]^2+2*Δs*previousPoint[:a] < 0.0
|
|
if previousPoint[:a] < 0.0 && squareRootPartIsNegative
|
|
error("ERROR: The train stops during the accelerating section in CS",csId," because the tractive effort is lower than the resistant forces.",
|
|
" Before the stop the last point has the values s=",previousPoint[:s]," m, v=",previousPoint[:v]," m/s, a=",previousPoint[:a]," m/s^2,",
|
|
" F_T=",previousPoint[:F_T]," N, R_traction=",previousPoint[:R_traction]," N, R_wagons=",previousPoint[:R_wagons]," N, R_path=",previousPoint[:R_path]," N.")
|
|
end
|
|
Δt = Δt_with_Δs(Δs, previousPoint[:a], previousPoint[:v]) # step size (in s)
|
|
Δv = Δv_with_Δs(Δs, previousPoint[:a], previousPoint[:v]) # step size (in m/s)
|
|
end
|
|
|
|
elseif stepVariable == :time # time step method
|
|
Δt = stepSize # step size (in s)
|
|
Δs = Δs_with_Δt(Δt, previousPoint[:a], previousPoint[:v]) # step size (in m)
|
|
Δv = Δv_with_Δt(Δt, previousPoint[:a]) # step size (in m/s)
|
|
|
|
elseif stepVariable == :velocity # velocity step method
|
|
if previousPoint[:a] == 0.0
|
|
if previousPoint[:v] == 0.0
|
|
error("ERROR: The train tries to cruise at v=0.0 m/s at s=",previousPoint[:s]," in CS",csId,".")
|
|
end
|
|
Δs = stepSize # step size (in m)
|
|
# TODO what is the best default step size for constant v? define Δs or Δt?
|
|
Δt = Δt_with_constant_v(Δs, previousPoint[:v]) # step size (in s)
|
|
Δv = 0.0 # step size (in m/s)
|
|
else
|
|
Δv = stepSize * sign(previousPoint[:a]) # step size (in m/s)
|
|
Δs = Δs_with_Δv(Δv, previousPoint[:a], previousPoint[:v]) # step size (in m)
|
|
Δt = Δt_with_Δv(Δv, previousPoint[:a]) # step size (in s)
|
|
end
|
|
end #if
|
|
|
|
newPoint[:s] = previousPoint[:s] + Δs # position (in m)
|
|
newPoint[:t] = previousPoint[:t] + Δt # point in time (in s)
|
|
newPoint[:v] = previousPoint[:v] + Δv # velocity (in m/s)
|
|
|
|
return newPoint
|
|
end #function moveAStep
|
|
|
|
|
|
"""
|
|
# if the rear of the train is still located in a former characteristic section it has to be checked if its speed limit can be kept
|
|
"""
|
|
function getCurrentSpeedLimit(CSs::Vector{Dict}, csWithTrainHeadId::Integer, s::Real, trainLength::Real)
|
|
v_limit = CSs[csWithTrainHeadId][:v_limit]
|
|
s_exit = CSs[csWithTrainHeadId][:s_exit]
|
|
if csWithTrainHeadId > 1 && s -trainLength < CSs[csWithTrainHeadId][:s_entry]
|
|
formerCsId = csWithTrainHeadId-1
|
|
while formerCsId > 0 && s -trainLength < CSs[formerCsId][:s_exit]
|
|
if CSs[formerCsId][:v_limit] < v_limit # TODO: is the position of the train's rear < movingSection[:s_entry], v_limit of the first CS is used
|
|
v_limit = CSs[formerCsId][:v_limit]
|
|
s_exit = CSs[formerCsId][:s_exit]
|
|
end
|
|
formerCsId = formerCsId -1
|
|
end
|
|
end
|
|
currentSpeedLimit = Dict(:v => v_limit, :s_end => s_exit + trainLength)
|
|
return currentSpeedLimit
|
|
end #function getCurrentSpeedLimit
|
|
|
|
|
|
"""
|
|
TODO
|
|
"""
|
|
function getNextPointOfInterest(pointsOfInterest::Vector{Tuple}, s::Real)
|
|
for POI in pointsOfInterest
|
|
if POI[1] > s
|
|
return POI
|
|
end
|
|
end
|
|
error("ERROR in getNextPointOfInterest: There is no POI higher than s=",s," m.")
|
|
end #function getNextPointOfInterest
|
|
|
|
|
|
## create a moving section and its containing characteristic sections with secured braking, accelerating and cruising behavior
|
|
function determineCharacteristics(path::Path, train::Train, settings::Settings)
|
|
movingSection = MovingSection(path, train.v_limit, train.length)
|
|
movingSection = secureBrakingBehavior!(movingSection, train.a_braking, settings.approxLevel)
|
|
movingSection = secureAcceleratingBehavior!(movingSection, settings, train)
|
|
#movingSection = secureCruisingBehavior!(movingSection, settings, train)
|
|
|
|
return movingSection
|
|
end #function determineCharacteristics
|