Rename 'current speed limit' to 'lowest speed limit'

master
Max Kannenberg 2022-08-17 12:18:27 +02:00
parent f11e64b8b8
commit 6af0912359
2 changed files with 47 additions and 43 deletions

View File

@ -52,7 +52,7 @@ function addBreakFreeSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags:
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0 stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0
stateFlags[:previousSpeedLimitReached] = false stateFlags[:previousSpeedLimitReached] = false
stateFlags[:speedLimitReached] = drivingCourse[end][:v] >= CS[:v_limit] stateFlags[:speedLimitReached] = drivingCourse[end][:v] >= CS[:v_limit]
stateFlags[:error] = !(stateFlags[:endOfCSReached] || stateFlags[:brakingStartReached] || stateFlags[:tractionDeficit] || stateFlags[:previousSpeedLimitReached] || stateFlags[:speedLimitReached]) stateFlags[:error] = drivingCourse[end][:v] > CS[:v_limit] || drivingCourse[end][:s] > CS[:s_exit]
return (CS, drivingCourse, stateFlags) return (CS, drivingCourse, stateFlags)
end #function addBreakFreeSection! end #function addBreakFreeSection!
@ -61,7 +61,7 @@ end #function addBreakFreeSection!
# Therefore it gets its previous driving course and the characteristic section and returns the characteristic section and driving course including the clearing section. # Therefore it gets its previous driving course and the characteristic section and returns the characteristic section and driving course including the clearing section.
function addClearingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict}) function addClearingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
if stateFlags[:previousSpeedLimitReached] if stateFlags[:previousSpeedLimitReached]
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
if haskey(stateFlags, :usedForDefiningCharacteristics) && stateFlags[:usedForDefiningCharacteristics] if haskey(stateFlags, :usedForDefiningCharacteristics) && stateFlags[:usedForDefiningCharacteristics]
ignoreBraking = true ignoreBraking = true
@ -71,7 +71,7 @@ function addClearingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::
s_braking = brakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel) s_braking = brakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
end end
s_clearing = min(CS[:s_exit]-drivingCourse[end][:s]-s_braking, currentSpeedLimit[:s_end] - drivingCourse[end][:s]) s_clearing = min(CS[:s_exit]-drivingCourse[end][:s]-s_braking, lowestSpeedLimit[:s_end] - drivingCourse[end][:s])
if s_clearing > 0.0 if s_clearing > 0.0
(CS, drivingCourse, stateFlags) = addCruisingSection!(CS, drivingCourse, stateFlags, s_clearing, settings, train, CSs, "clearing") (CS, drivingCourse, stateFlags) = addCruisingSection!(CS, drivingCourse, stateFlags, s_clearing, settings, train, CSs, "clearing")
calculateForces!(drivingCourse[end], CSs, CS[:id], "accelerating", train, settings.massModel) calculateForces!(drivingCourse[end], CSs, CS[:id], "accelerating", train, settings.massModel)
@ -81,8 +81,8 @@ function addClearingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::
error("ERROR: clearing <=0.0 although it has to be >0.0 in CS ",CS[:id]) error("ERROR: clearing <=0.0 although it has to be >0.0 in CS ",CS[:id])
end end
#stateFlags[:previousSpeedLimitReached] = false #stateFlags[:previousSpeedLimitReached] = false
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
stateFlags[:previousSpeedLimitReached] = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v] stateFlags[:previousSpeedLimitReached] = lowestSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= lowestSpeedLimit[:v]
else else
stateFlags[:error] = true stateFlags[:error] = true
end end
@ -118,8 +118,8 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
drivingMode = "accelerating" drivingMode = "accelerating"
drivingCourse[end][:behavior] = drivingMode drivingCourse[end][:behavior] = drivingMode
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
previousSpeedLimitReached = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v] previousSpeedLimitReached = lowestSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= lowestSpeedLimit[:v]
while !speedLimitReached && !endOfCSReached && tractionSurplus && !brakingStartReached && !previousSpeedLimitReached while !speedLimitReached && !endOfCSReached && tractionSurplus && !brakingStartReached && !previousSpeedLimitReached
currentStepSize = settings.stepSize # initialize the step size that can be reduced near intersections currentStepSize = settings.stepSize # initialize the step size that can be reduced near intersections
@ -132,9 +132,9 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
end end
while !speedLimitReached && !brakingStartReached && !pointOfInterestReached && tractionSurplus && !previousSpeedLimitReached while !speedLimitReached && !brakingStartReached && !pointOfInterestReached && tractionSurplus && !previousSpeedLimitReached
if drivingCourse[end][:s] >= currentSpeedLimit[:s_end] if drivingCourse[end][:s] >= lowestSpeedLimit[:s_end]
# could be asked after creating an support point. This way here prevents even a minimal exceedance of speed limit. On the other hand the train cruises possibly a little to long # could be asked after creating an support point. This way here prevents even a minimal exceedance of speed limit. On the other hand the train cruises possibly a little to long
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
end end
# acceleration (in m/s^2): # acceleration (in m/s^2):
@ -152,7 +152,7 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
end end
brakingStartReached = drivingCourse[end][:s] +s_braking >= CS[:s_exit] brakingStartReached = drivingCourse[end][:s] +s_braking >= CS[:s_exit]
speedLimitReached = drivingCourse[end][:v] >= CS[:v_limit] speedLimitReached = drivingCourse[end][:v] >= CS[:v_limit]
previousSpeedLimitReached = currentSpeedLimit[:v] < CS[:v_limit] && (drivingCourse[end][:v] > currentSpeedLimit[:v] || (drivingCourse[end][:v] == currentSpeedLimit[:v] && drivingCourse[end][:s] < currentSpeedLimit[:s_end])) previousSpeedLimitReached = lowestSpeedLimit[:v] < CS[:v_limit] && (drivingCourse[end][:v] > lowestSpeedLimit[:v] || (drivingCourse[end][:v] == lowestSpeedLimit[:v] && drivingCourse[end][:s] < lowestSpeedLimit[:s_end]))
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1] # POIs include s_exit as well pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1] # POIs include s_exit as well
tractionSurplus = drivingCourse[end][:F_T] > drivingCourse[end][:F_R] tractionSurplus = drivingCourse[end][:F_T] > drivingCourse[end][:F_R]
end #while end #while
@ -181,10 +181,10 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
currentStepSize = settings.stepSize / 10.0^cycle currentStepSize = settings.stepSize / 10.0^cycle
end end
elseif drivingCourse[end][:v] > currentSpeedLimit[:v] elseif drivingCourse[end][:v] > lowestSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_limitCurrent=",currentSpeedLimit[:v]) # for testing testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_lowestLimit=", lowestSpeedLimit[:v]) # for testing
if settings.stepVariable == :velocity if settings.stepVariable == :velocity
currentStepSize = currentSpeedLimit[:v] - drivingCourse[end-1][:v] currentStepSize = lowestSpeedLimit[:v] - drivingCourse[end-1][:v]
else else
currentStepSize = settings.stepSize / 10.0^cycle currentStepSize = settings.stepSize / 10.0^cycle
end end
@ -196,8 +196,8 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
end end
break break
elseif drivingCourse[end][:v] == currentSpeedLimit[:v] elseif drivingCourse[end][:v] == lowestSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," == v_limitCurrent=",currentSpeedLimit[:v]) # for testing testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," == v_lowestLimit=", lowestSpeedLimit[:v]) # for testing
break break
elseif drivingCourse[end][:s] == nextPointOfInterest[1] elseif drivingCourse[end][:s] == nextPointOfInterest[1]
@ -208,7 +208,7 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
break break
else else
println("v=",drivingCourse[end][:v]," v_limit= ", CS[:v_limit] , " v_currentLimit=", currentSpeedLimit[:v]) println("v=",drivingCourse[end][:v]," v_limit= ", CS[:v_limit] , " v_lowestLimit=", lowestSpeedLimit[:v])
println("s=" ,drivingCourse[end][:s]," s_exit=", CS[:s_exit], " s+s_braking=", drivingCourse[end][:s] +s_braking," nextPOI=",nextPointOfInterest[1]) println("s=" ,drivingCourse[end][:s]," s_exit=", CS[:s_exit], " s+s_braking=", drivingCourse[end][:s] +s_braking," nextPOI=",nextPointOfInterest[1])
println("F_T=",drivingCourse[end][:F_T] ," F_R=", drivingCourse[end][:F_R]) println("F_T=",drivingCourse[end][:F_T] ," F_R=", drivingCourse[end][:F_R])
@ -226,8 +226,8 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
tractionSurplus = true tractionSurplus = true
else # if the level of approximation is reached else # if the level of approximation is reached
if drivingCourse[end][:v] > currentSpeedLimit[:v] if drivingCourse[end][:v] > lowestSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_limitCurrent=",currentSpeedLimit[:v], "with v_limit=",CS[:v_limit]) # for testing testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_lowestLimit=", lowestSpeedLimit[:v], "with v_limit=",CS[:v_limit]) # for testing
pop!(drivingCourse) pop!(drivingCourse)
# conditions for the next section # conditions for the next section
@ -252,8 +252,8 @@ function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFla
else else
if drivingCourse[end][:s] + s_braking == CS[:s_exit] if drivingCourse[end][:s] + s_braking == CS[:s_exit]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," else case and there: s +s_braking=", drivingCourse[end][:s],",+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," else case and there: s +s_braking=", drivingCourse[end][:s],",+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing
elseif drivingCourse[end][:v] == currentSpeedLimit[:v] elseif drivingCourse[end][:v] == lowestSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," == v_limitCurrent=",currentSpeedLimit[:v]) # for testing testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," == v_lowestLimit=", lowestSpeedLimit[:v]) # for testing
end end
end end
@ -526,8 +526,8 @@ function addCruisingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::
stateFlags[:brakingStartReached] = brakingStartReached || drivingCourse[end][:s] + s_braking >= CS[:s_exit] stateFlags[:brakingStartReached] = brakingStartReached || drivingCourse[end][:s] + s_braking >= CS[:s_exit]
stateFlags[:tractionDeficit] = tractionDeficit stateFlags[:tractionDeficit] = tractionDeficit
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0.0 stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0.0
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
stateFlags[:previousSpeedLimitReached] = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v] stateFlags[:previousSpeedLimitReached] = lowestSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= lowestSpeedLimit[:v]
stateFlags[:error] = !(targetPositionReached || tractionDeficit || !(cruisingType == "clearing" || ((cruisingType == "downhillBraking") == resistingForceNegative))) stateFlags[:error] = !(targetPositionReached || tractionDeficit || !(cruisingType == "clearing" || ((cruisingType == "downhillBraking") == resistingForceNegative)))
return (CS, drivingCourse, stateFlags) return (CS, drivingCourse, stateFlags)
@ -559,7 +559,7 @@ function addDiminishingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlag
drivingCourse[end][:behavior] = drivingMode drivingCourse[end][:behavior] = drivingMode
while tractionDeficit && !targetSpeedReached && !endOfCSReached && !brakingStartReached while tractionDeficit && !targetSpeedReached && !endOfCSReached && !brakingStartReached
currentStepSize=settings.stepSize # initialize the step size that can be reduced near intersections currentStepSize = settings.stepSize # initialize the step size that can be reduced near intersections
nextPointOfInterest = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s]) nextPointOfInterest = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1] pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
@ -710,8 +710,8 @@ end #function addDiminishingSection!
function addCoastingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict}) function addCoastingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
# conditions for coasting section # conditions for coasting section
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
previousSpeedLimitReached = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] > currentSpeedLimit[:v] previousSpeedLimitReached = lowestSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] > lowestSpeedLimit[:v]
speedLimitReached = drivingCourse[end][:v] > CS[:v_limit] speedLimitReached = drivingCourse[end][:v] > CS[:v_limit]
targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit] || previousSpeedLimitReached || speedLimitReached targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit] || previousSpeedLimitReached || speedLimitReached
endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit] || stateFlags[:endOfCSReached] endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit] || stateFlags[:endOfCSReached]
@ -725,15 +725,15 @@ function addCoastingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::
drivingCourse[end][:behavior] = drivingMode drivingCourse[end][:behavior] = drivingMode
while !targetSpeedReached && !endOfCSReached && !brakingStartReached while !targetSpeedReached && !endOfCSReached && !brakingStartReached
currentStepSize=settings.stepSize # initialize the step size that can be reduced near intersections currentStepSize = settings.stepSize # initialize the step size that can be reduced near intersections
nextPointOfInterest[1] = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s]) nextPointOfInterest[1] = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1] pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
for cycle in 1:settings.approxLevel+1 # first cycle with normal step size followed by cycles with reduced step size depending on the level of approximation for cycle in 1:settings.approxLevel+1 # first cycle with normal step size followed by cycles with reduced step size depending on the level of approximation
while !targetSpeedReached && !brakingStartReached && !pointOfInterestReached while !targetSpeedReached && !brakingStartReached && !pointOfInterestReached
if drivingCourse[end][:s] >= currentSpeedLimit[:s_end] if drivingCourse[end][:s] >= lowestSpeedLimit[:s_end]
# could be asked after creating an support point. This way here prevents even a minimal exceedance of speed limit. # could be asked after creating an support point. This way here prevents even a minimal exceedance of speed limit.
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
end end
# traction effort and resisting forces (in N): # traction effort and resisting forces (in N):
@ -750,7 +750,7 @@ function addCoastingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::
s_braking = brakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel) s_braking = brakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
brakingStartReached = drivingCourse[end][:s] + s_braking >= CS[:s_exit] brakingStartReached = drivingCourse[end][:s] + s_braking >= CS[:s_exit]
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1] pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit] || drivingCourse[end][:v] > CS[:v_limit] || currentSpeedLimit[:v] < CS[:v_limit] && (drivingCourse[end][:v] > currentSpeedLimit[:v] || (drivingCourse[end][:v] == currentSpeedLimit[:v] && drivingCourse[end][:s] < currentSpeedLimit[:s_end])) targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit] || drivingCourse[end][:v] > CS[:v_limit] || lowestSpeedLimit[:v] < CS[:v_limit] && (drivingCourse[end][:v] > lowestSpeedLimit[:v] || (drivingCourse[end][:v] == lowestSpeedLimit[:v] && drivingCourse[end][:s] < lowestSpeedLimit[:s_end]))
end # while end # while
testFlag = false testFlag = false
@ -777,10 +777,10 @@ function addCoastingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::
currentStepSize = settings.stepSize / 10.0^cycle currentStepSize = settings.stepSize / 10.0^cycle
end end
elseif drivingCourse[end][:v] > currentSpeedLimit[:v] elseif drivingCourse[end][:v] > lowestSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: v=", drivingCourse[end][:v]," > v_limitCurrent=", currentSpeedLimit[:v]) # for testing testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: v=", drivingCourse[end][:v]," > v_lowestLimit=", lowestSpeedLimit[:v]) # for testing
if settings.stepVariable == :velocity if settings.stepVariable == :velocity
currentStepSize = currentSpeedLimit[:v] - drivingCourse[end-1][:v] currentStepSize = lowestSpeedLimit[:v] - drivingCourse[end-1][:v]
else else
currentStepSize = settings.stepSize / 10.0^cycle currentStepSize = settings.stepSize / 10.0^cycle
end end
@ -825,14 +825,14 @@ function addCoastingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::
pointOfInterestReached = false pointOfInterestReached = false
targetSpeedReached = false targetSpeedReached = false
elseif drivingCourse[end][:v] > currentSpeedLimit[:v] # if the train gets to fast it has to brake to hold the velocity limit elseif drivingCourse[end][:v] > lowestSpeedLimit[:v] # if the train gets to fast it has to brake to hold the velocity limit
# delete last support point because it went to far # delete last support point because it went to far
pop!(drivingCourse) pop!(drivingCourse)
# conditions for the next for cycle # conditions for the next for cycle
brakingStartReached = false brakingStartReached = false
pointOfInterestReached = false pointOfInterestReached = false
if currentSpeedLimit[:v] != CS[:v_limit] if lowestSpeedLimit[:v] != CS[:v_limit]
previousSpeedLimitReached = true previousSpeedLimitReached = true
else else
speedLimitReached = true speedLimitReached = true
@ -1000,8 +1000,8 @@ function addBrakingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::D
end # else: return the characteristic section without a braking section end # else: return the characteristic section without a braking section
# set state flags # set state flags
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length) lowestSpeedLimit = getLowestSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
stateFlags[:previousSpeedLimitReached] = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v] stateFlags[:previousSpeedLimitReached] = lowestSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= lowestSpeedLimit[:v]
stateFlags[:speedLimitReached] = drivingCourse[end][:v] >= CS[:v_exit] stateFlags[:speedLimitReached] = drivingCourse[end][:v] >= CS[:v_exit]
stateFlags[:endOfCSReached] = endOfCSReached stateFlags[:endOfCSReached] = endOfCSReached
stateFlags[:error] = !(endOfCSReached) stateFlags[:error] = !(endOfCSReached)
@ -1028,9 +1028,9 @@ end #function addHalt!
function recalculateLastBrakingPoint!(drivingCourse, s_target, v_target) function recalculateLastBrakingPoint!(drivingCourse, s_target, v_target)
currentPoint = drivingCourse[end] currentPoint = drivingCourse[end]
previousPoint = drivingCourse[end-1] previousPoint = drivingCourse[end-1]
# set s and v # set s and v
currentPoint[:s] = s_target # position (in m) currentPoint[:s] = s_target # position (in m)
currentPoint[:v] = v_target # velocity (in m/s) currentPoint[:v] = v_target # velocity (in m/s)
# calculate other values # calculate other values
previousPoint[:a] = brakingAcceleration(previousPoint[:v], currentPoint[:v], currentPoint[:s]-previousPoint[:s]) previousPoint[:a] = brakingAcceleration(previousPoint[:v], currentPoint[:v], currentPoint[:s]-previousPoint[:s])

View File

@ -44,6 +44,10 @@ function calculateMinimumRunningTime!(CSs::Vector{Dict}, settings::Settings, tra
# determine the behavior sections for this characteristic section. It has to be at least one of those BS: "breakFree", "clearing", "accelerating", "cruising", "diminishing", "coasting", "braking" or "halt") # determine the behavior sections for this characteristic section. It has to be at least one of those BS: "breakFree", "clearing", "accelerating", "cruising", "diminishing", "coasting", "braking" or "halt")
while !stateFlags[:endOfCSReached] # s < s_exit while !stateFlags[:endOfCSReached] # s < s_exit
if stateFlags[:error]
error("ERROR in calc in CS",CS[:id],": BS=",drivingCourse[end][:behavior]," s=",drivingCourse[end][:s]," s_braking=",s_braking," v_limit=",CS[:v_limit]," v=",drivingCourse[end][:v]," v_exit=",CS[:v_exit]," with the flags: endOfCS: ",stateFlags[:endOfCSReached]," brakingStart: ",stateFlags[:brakingStartReached]," F_T<F_R: ",stateFlags[:tractionDeficit]," F_R<0: ",stateFlags[:resistingForceNegative]," v_previousLimit: ",stateFlags[:previousSpeedLimitReached]," v_limit: ",stateFlags[:speedLimitReached]," error: ",stateFlags[:error])
end
if !stateFlags[:brakingStartReached] # s+s_braking < s_exit if !stateFlags[:brakingStartReached] # s+s_braking < s_exit
if !stateFlags[:tractionDeficit] if !stateFlags[:tractionDeficit]
if drivingCourse[end][:F_T] > drivingCourse[end][:F_R] && drivingCourse[end][:v] == 0.0 if drivingCourse[end][:F_T] > drivingCourse[end][:F_R] && drivingCourse[end][:v] == 0.0
@ -287,7 +291,7 @@ end #function moveAStep
""" """
# if the rear of the train is still located in a former characteristic section it has to be checked if its speed limit can be kept # if the rear of the train is still located in a former characteristic section it has to be checked if its speed limit can be kept
""" """
function getCurrentSpeedLimit(CSs::Vector{Dict}, csWithTrainHeadId::Integer, s::Real, trainLength::Real) function getLowestSpeedLimit(CSs::Vector{Dict}, csWithTrainHeadId::Integer, s::Real, trainLength::Real)
v_limit = CSs[csWithTrainHeadId][:v_limit] v_limit = CSs[csWithTrainHeadId][:v_limit]
s_exit = CSs[csWithTrainHeadId][:s_exit] s_exit = CSs[csWithTrainHeadId][:s_exit]
if csWithTrainHeadId > 1 && s -trainLength < CSs[csWithTrainHeadId][:s_entry] if csWithTrainHeadId > 1 && s -trainLength < CSs[csWithTrainHeadId][:s_entry]
@ -300,9 +304,9 @@ function getCurrentSpeedLimit(CSs::Vector{Dict}, csWithTrainHeadId::Integer, s::
formerCsId = formerCsId -1 formerCsId = formerCsId -1
end end
end end
currentSpeedLimit = Dict(:v => v_limit, :s_end => s_exit + trainLength) lowestSpeedLimit = Dict(:v => v_limit, :s_end => s_exit + trainLength)
return currentSpeedLimit return lowestSpeedLimit
end #function getCurrentSpeedLimit end #function getLowestSpeedLimit
""" """