2022-04-28 17:29:24 +02:00
#!/usr/bin/env julia
# -*- coding: UTF-8 -*-
# __julia-version__ = 1.7.2
# __author__ = "Max Kannenberg"
# __copyright__ = "2022"
# __license__ = "ISC"
#########################
## literature the driving dynamics equations are based on:
##
## @incollection{Bruenger:2014, % Chapter 4
## author = {Brünger, Olaf and Dahlhaus, Elias},
## year = {2014},
## title = {Running Time Estimation},
## pages = {65--90},
## booktitle = {Railway Timetabling \& Operations.},
## editora = {Hansen, Ingo A.},
## editorb = {Pachl, Jörn},
## isbn = {978-3-777-10462-1},
## publisher = {Eurailpress DVV Media Group},
## }
## @Book{Wende:2003,
## author = {Wende, Dietrich},
## date = {2003},
## title = {Fahrdynamik des Schienenverkehrs},
## isbn = {978-3-322-82961-0},
## publisher = {Springer-Verlag},
## }
#########################
approxLevel = 6
v00 = 100 / 3.6 # velocity factor (in m/s)
## calculate forces
#TODO: replace the ? ? ?
"""
calcTractionUnitResistance ( v , train )
Calculate the vehicle resistance for the traction unit of the ` train ` dependend on the velocity ` v ` .
...
# Arguments
- ` v::AbstractFloat ` : the current velocity in m / s .
2022-05-12 16:32:15 +02:00
- ` train::Train ` : ? ? ?
2022-04-28 17:29:24 +02:00
...
# Examples
``` julia-repl
julia > calcTractionUnitResistance ( 30.0 , ? ? ? )
? ? ?
```
"""
2022-05-12 16:32:15 +02:00
function calcTractionUnitResistance ( v :: AbstractFloat , train :: Train )
2022-04-28 17:29:24 +02:00
# equation is based on [Wende:2003, page 151]
2022-05-12 16:32:15 +02:00
f_Rtd0 = train . f_Rtd0 # coefficient for basic resistance due to the traction units driving axles (in ‰)
f_Rtc0 = train . f_Rtc0 # coefficient for basic resistance due to the traction units carring axles (in ‰)
F_Rt2 = train . F_Rt2 # coefficient for air resistance of the traction units (in N)
m_td = train . m_td # mass on the traction unit's driving axles (in kg)
m_tc = train . m_tc # mass on the traction unit's carrying axles (in kg)
2022-04-28 17:29:24 +02:00
2022-05-12 16:32:15 +02:00
F_R_tractionUnit = f_Rtd0 / 1000 * m_td * g + f_Rtc0 / 1000 * m_tc * g + F_Rt2 * ( ( v + Δv_air ) / v00 ) ^ 2 # vehicle resistance of the traction unit (in N) # /1000 because of the unit ‰
# TODO: use calcForceFromCoefficient? F_R_tractionUnit = calcForceFromCoefficient(f_Rtd0, m_td) + calcForceFromCoefficient(f_Rtc0, m_tc) + F_Rt2 * ((v + Δv_air) /v00)^2 # vehicle resistance of the traction unit (in N)
2022-04-28 17:29:24 +02:00
return F_R_tractionUnit
#TODO: same variable name like in the rest of the tool? return R_traction
2022-05-12 16:32:15 +02:00
#TODO: just one line? return train.f_Rtd0/1000*train.m_td*g+train.f_Rtc0/1000*train.m_tc*g+train.F_Rt2*((v+train.Δv_air)/v00)^2 # /1000 because of the unit ‰
2022-04-28 17:29:24 +02:00
end #function calcTractionUnitResistance
"""
TODO
calculate and return the wagons vehicle resistance dependend on the velocity
"""
2022-05-12 16:32:15 +02:00
function calcWagonsResistance ( v :: AbstractFloat , train :: Train )
2022-04-28 17:29:24 +02:00
# equation is based on a combination of the equations of Strahl and Sauthoff [Wende:2003, page 153] with more detailled factors (Lehmann, page 135)
2022-05-12 16:32:15 +02:00
f_Rw0 = train . f_Rw0 # coefficient for basic resistance of the set of wagons (consist) (in ‰)
f_Rw1 = train . f_Rw1 # coefficient for the consists resistance to rolling (in ‰)
f_Rw2 = train . f_Rw2 # coefficient fo the consistsr air resistance (in ‰)
m_w = train . m_w # mass of the set of wagons (consist) (in kg)
2022-04-28 17:29:24 +02:00
2022-05-12 16:32:15 +02:00
F_R_wagons = m_w * g * ( f_Rw0 / 1000 + f_Rw1 / 1000 * v / v00 + f_Rw2 / 1000 * ( ( v + Δv_air ) / v00 ) ^ 2 ) # vehicle resistance of the wagons (in N) # /1000 because of the unit ‰
# TODO: use calcForceFromCoefficient? F_R_wagons = calcForceFromCoefficient(f_Rw0, m_w) + calcForceFromCoefficient(f_Rw1, m_w) *v /v00 + calcForceFromCoefficient(f_Rw2, m_w) * ((v + Δv_air) /v00)^2 # vehicle resistance of the wagons (in N)
2022-04-28 17:29:24 +02:00
return F_R_wagons
end #function calcWagonsResistance
function calcForceFromCoefficient ( f_R :: Real , m :: Real )
# equation is based on [Wende:2003, page 8]
# f_R: specific resistance (in ‰)
# m: vehicle's mass (in kg)
F_R = f_R / 1000 * m * g # Resisting Force (in N) # /1000 because of the unit ‰
return F_R
end #function calcForceFromCoefficient
function calcAcceleration ( F_T :: Real , F_R :: Real , m_train :: Real , ξ_train :: Real )
# equation is based on [Bruenger:2014, page 72] with a=dv/dt
# F_T: tractive effort (in N)
# F_R: resisting forces (in N)
# m_train: train's mass (in kg)
# ξ_train: train's rotation mass factor (without unit)
a = ( F_T - F_R ) / m_train / ξ_train # acceleration (in m/s)
return a
end #function calcAcceleration
function calc_Δs_with_Δt ( Δt :: Real , a_prev :: Real , v_prev :: Real )
# equation is based on [Wende:2003, page 37]
# Δt: time step (in s)
# a_prev: acceleration from previous data point
# v_prev: velocitiy from previous data point
Δs = Δt * ( 2 * v_prev + Δt * a_prev ) / 2 # step size (in m)
return Δs
end #function calc_Δs_with_Δt
function calc_Δs_with_Δv ( Δv :: Real , a_prev :: Real , v_prev :: Real )
# equation is based on [Wende:2003, page 37]
# Δv: velocity step (in m/s)
# a_prev: acceleration from previous data point
# v_prev: velocitiy from previous data point
Δs = ( ( v_prev + Δv ) ^ 2 - v_prev ^ 2 ) / 2 / a_prev # step size (in m)
return Δs
end #function calc_Δs_with_Δv
function calc_Δt_with_Δs ( Δs :: Real , a_prev :: Real , v_prev :: Real )
# equation is based on [Wende:2003, page 37]
# Δs: distance step (in m)
# a_prev: acceleration from previous data point
# v_prev: velocitiy from previous data point
Δt = sign ( a_prev ) * sqrt ( ( v_prev / a_prev ) ^ 2 + 2 * Δs / a_prev ) - v_prev / a_prev # step size (in m/s)
return Δt
end #function calc_Δt_with_Δs
function calc_Δt_with_Δv ( Δv :: Real , a_prev :: Real )
# equation is based on [Wende:2003, page 37]
# Δv: velocity step (in m/s)
# a_prev: acceleration from previous data point
Δt = Δv / a_prev # step size (in s)
return Δt
end #function calc_Δt_with_Δv
function calc_Δt_with_constant_v ( Δs :: Real , v :: Real )
# equation is based on [Wende:2003, page 37]
# Δs: distance step (in m)
# v: constant velocity (in m/s)
Δt = Δs / v # step size (in s)
return Δt
end #function calc_Δt_with_constant_v
function calc_Δv_with_Δs ( Δs :: Real , a_prev :: Real , v_prev :: Real )
# equation is based on [Wende:2003, page 37]
# Δs: distance step (in m)
# a_prev: acceleration from previous data point
# v_prev: velocitiy from previous data point
Δv = sqrt ( v_prev ^ 2 + 2 * Δs * a_prev ) - v_prev # step size (in m/s)
return Δv
end #function calc_Δv_with_Δs
function calc_Δv_with_Δt ( Δt :: Real , a_prev :: Real )
# equation is based on [Wende:2003, page 37]
# Δt: time step (in s)
# a_prev: acceleration from previous data point
Δv = Δt * a_prev # step size (in m/s)
return Δv
end #function calc_Δv_with_Δt
function calc_ΔW ( F_T_prev :: Real , Δs :: Real )
# equation is based on [Wende:2003, page 17]
# F_T_prev: tractive force from previous data point
# Δs: distance step
ΔW = F_T_prev * Δs # mechanical work in this step (in Ws)
return ΔW
end #function calc_ΔW
function calc_ΔE ( ΔW :: Real )
# simplified equation
# TODO!
# ΔW: mechanical work in this step (in Ws)
ΔE = ΔW # energy consumption in this step (in Ws)
return ΔE
end #function calc_ΔW
function calcBrakingDistance ( v_start :: Real , v_end :: Real , a_braking :: Real )
# equation is based on [Wende:2003, page 37]
# v_start: velocity at the start of braking (in m/s)
# v_end: target velocity at the end of braking (in m/s)
# a_braking: constant braking acceleration (in m/s^2)
s_braking = ( v_end ^ 2 - v_start ^ 2 ) / 2 / a_braking # braking distance (in m)
# TODO: also possible: calc_Δs_with_Δv(v_end-v_start, a_braking, v_start)
# return max(0.0, ceil(s_braking, digits=approxLevel)) # ceil is used to be sure that the train stops at s_exit in spite of rounding errors
return max ( 0.0 , ceil ( s_braking , digits = approxLevel + 1 ) ) # ceil is used to be sure that the train stops at s_exit in spite of rounding errors
end #function calcBrakingDistance
function calcBrakingStartVelocity ( v_end :: Real , a_braking :: Real , s_braking :: Real )
# equation is based on [Wende:2003, page 37]
# v_end: target velocity at the end of braking (in m/s)
# a_braking: constant braking acceleration (in m/s^2)
# s_braking: braking distance (in Ws)
v_start = sqrt ( v_end ^ 2 - 2 * a_braking * s_braking ) # braking start velocity (in m/s)
# return floor(v_start, digits=approxLevel)
return floor ( v_start , digits = approxLevel + 1 )
end #function calcBrakingStartVelocity
function calcBrakingAcceleration ( v_start :: Real , v_end :: Real , s_braking :: Real )
# equation is based on [Wende:2003, page 37]
# v_start: braking start velocity (in m/s)
# v_end: target velocity at the end of braking (in m/s)
# s_braking: braking distance (in Ws)
a_braking = ( v_end ^ 2 - v_start ^ 2 ) / 2 / s_braking # constant braking acceleration (in m/s^2)
return a_braking
end #function calcBrakingAcceleration