TrainRun.jl/src/behavior.jl

1364 lines
85 KiB
Julia
Raw Normal View History

2022-04-28 17:29:24 +02:00
#!/usr/bin/env julia
# -*- coding: UTF-8 -*-
# __julia-version__ = 1.7.2
# __author__ = "Max Kannenberg"
# __copyright__ = "2020-2022"
# __license__ = "ISC"
"""
calculateTractiveEffort(v, tractiveEffortVelocityPairs)
Calculate the trains tractive effort with the `tractiveEffortVelocityPairs` dependend on the velocity `v`.
...
# Arguments
- `v::AbstractFloat`: the current velocity in m/s.
2022-05-12 16:32:15 +02:00
- `tractiveEffortVelocityPairs::Array{}`: the trains pairs for velocity in m/s and tractive effort in N as one array containing an array for each pair.
2022-04-28 17:29:24 +02:00
...
# Examples
```julia-repl
2022-05-12 16:32:15 +02:00
julia> calculateTractiveEffort(20.0, [(0.0, 180000), (20.0, 100000), (40.0, 60000), (60.0, 40000), (80.0, 30000)])
2022-04-28 17:29:24 +02:00
100000
2022-05-12 16:32:15 +02:00
julia> calculateTractiveEffort(30.0, [(0.0, 180000), (20.0, 100000), (40.0, 60000), (60.0, 40000), (80.0, 30000)])
2022-04-28 17:29:24 +02:00
80000
```
"""
2022-05-12 16:32:15 +02:00
function calculateTractiveEffort(v::AbstractFloat, tractiveEffortVelocityPairs::Array{})
2022-04-28 17:29:24 +02:00
for row in 1:length(tractiveEffortVelocityPairs)
nextPair = tractiveEffortVelocityPairs[row]
if nextPair[1] == v
return nextPair[2]
elseif nextPair[1] > v
# interpolate for a straight line between the two surrounding points with the formula: F=(v-v_(row-1))*(F_row-F_(row-1))/(v_row-v_(row-1))+F_(row-1)
previousPair = tractiveEffortVelocityPairs[row-1]
F_T_interpolation = (v-previousPair[1]) * (nextPair[2]-previousPair[2]) / (nextPair[1]-previousPair[1]) + previousPair[2]
return F_T_interpolation
end #if
end #for
# if v gets higher than the velocities in tractiveEffortVelocityPairs the last tractive effort will be used
# TODO: also an extrapolation could be used
return tractiveEffortVelocityPairs[end][2]
end #function calculateTractiveEffort
"""
calculate and return the path resistance dependend on the trains position and mass model
"""
2022-05-12 16:32:15 +02:00
function calculatePathResistance(CSs::Vector{Dict}, csId::Integer, s::Real, massModel, train::Train)
2022-04-28 17:29:24 +02:00
if massModel == :mass_point
2022-05-12 16:32:15 +02:00
pathResistance = calcForceFromCoefficient(CSs[csId][:r_path], train.m_train_full)
2022-04-28 17:29:24 +02:00
elseif massModel == :homogeneous_strip
pathResistance = 0.0
2022-05-12 16:32:15 +02:00
s_rear = s - train.length # position of the rear of the train
2022-04-28 17:29:24 +02:00
while csId > 0 && s_rear < CSs[csId][:s_exit]
2022-05-12 16:32:15 +02:00
pathResistance = pathResistance + (min(s, CSs[csId][:s_exit]) - max(s_rear, CSs[csId][:s_entry])) / train.length * calcForceFromCoefficient(CSs[csId][:r_path], train.m_train_full)
2022-04-28 17:29:24 +02:00
csId = csId-1
if csId == 0
# TODO: currently for values < movingSection[:s_entry] the values of movingSection[:s_entry] will be used
2022-05-12 16:32:15 +02:00
return pathResistance + (CSs[1][:s_entry] - s_rear) / train.length * calcForceFromCoefficient(CSs[1][:r_path], train.m_train_full)
2022-04-28 17:29:24 +02:00
end #if
end #while
end #if
return pathResistance
end #function calculatePathResistance
"""
calculate and return tractive and resisting forces for a data point
"""
2022-05-12 16:32:15 +02:00
function calculateForces!(dataPoint::Dict, CSs::Vector{Dict}, csId::Integer, bsType::String, train::Train, massModel)
2022-04-28 17:29:24 +02:00
# calculate resisting forces
dataPoint[:R_traction] = calcTractionUnitResistance(dataPoint[:v], train)
if train.transportType == :freight
dataPoint[:R_wagons] = calcFreightWagonsResistance(dataPoint[:v], train)
elseif train.transportType == :passenger
dataPoint[:R_wagons] = calcPassengerWagonsResistance(dataPoint[:v], train)
end
2022-04-28 17:29:24 +02:00
dataPoint[:R_train] = dataPoint[:R_traction] + dataPoint[:R_wagons]
dataPoint[:R_path] = calculatePathResistance(CSs, csId, dataPoint[:s], massModel, train)
dataPoint[:F_R] = dataPoint[:R_train] + dataPoint[:R_path]
# calculate tractive effort
if bsType == "braking" || bsType == "coasting"
dataPoint[:F_T] = 0.0
elseif bsType == "cruising"
2022-05-12 16:32:15 +02:00
dataPoint[:F_T] = min(max(0.0, dataPoint[:F_R]), calculateTractiveEffort(dataPoint[:v], train.tractiveEffort))
2022-04-28 17:29:24 +02:00
else # bsType == "accelerating" || bsType == "diminishing" || 'default'
2022-05-12 16:32:15 +02:00
dataPoint[:F_T] = calculateTractiveEffort(dataPoint[:v], train.tractiveEffort)
2022-04-28 17:29:24 +02:00
end
return dataPoint
end #function calculateForces!
"""
TODO
"""
function moveAStep(previousPoint::Dict, stepVariable::Symbol, stepSize::Real, csId::Integer)
# stepSize is the currentStepSize depending on the accessing function
# TODO: csId is only for error messages. Should it be removed?
#= 08/31 TODO: How to check if the train stopps during this step? I should throw an error myself that I catch in higher hierarchies. =#
# create the next data point
newPoint = createDataPoint()
newPoint[:i] = previousPoint[:i]+1 # identifier
# calculate s, t, v, E
if stepVariable == :distance # distance step method
newPoint[:Δs] = stepSize # step size (in m)
if previousPoint[:a] == 0.0
if previousPoint[:v] == 0.0
error("ERROR: The train tries to cruise at v=0.0 m/s at s=",previousPoint[:s]," in CS",csId,".")
end
newPoint[:Δt] = calc_Δt_with_constant_v(newPoint[:Δs], previousPoint[:v]) # step size (in s)
newPoint[:Δv] = 0.0 # step size (in m/s)
else
# check if the parts of the following square roots will be <0.0 in the functions calc_Δt_with_Δs and calc_Δv_with_Δs
squareRootPartIsNegative = (previousPoint[:v]/previousPoint[:a])^2+2*newPoint[:Δs]/previousPoint[:a] < 0.0 || previousPoint[:v]^2+2*newPoint[:Δs]*previousPoint[:a] < 0.0
if previousPoint[:a] < 0.0 && squareRootPartIsNegative
error("ERROR: The train stops during the accelerating section in CS",csId," because the tractive effort is lower than the resistant forces.",
" Before the stop the last point has the values s=",previousPoint[:s]," m, v=",previousPoint[:v]," m/s, a=",previousPoint[:a]," m/s^2,",
" F_T=",previousPoint[:F_T]," N, R_traction=",previousPoint[:R_traction]," N, R_wagons=",previousPoint[:R_wagons]," N, R_path=",previousPoint[:R_path]," N.")
end
newPoint[:Δt] = calc_Δt_with_Δs(newPoint[:Δs], previousPoint[:a], previousPoint[:v]) # step size (in s)
newPoint[:Δv] = calc_Δv_with_Δs(newPoint[:Δs], previousPoint[:a], previousPoint[:v]) # step size (in m/s)
end
elseif stepVariable == :time # time step method
newPoint[:Δt] = stepSize # step size (in s)
newPoint[:Δs] = calc_Δs_with_Δt(newPoint[:Δt], previousPoint[:a], previousPoint[:v]) # step size (in m)
newPoint[:Δv] = calc_Δv_with_Δt(newPoint[:Δt], previousPoint[:a]) # step size (in m/s)
elseif stepVariable == :velocity # velocity step method
if previousPoint[:a] == 0.0
if previousPoint[:v] == 0.0
error("ERROR: The train tries to cruise at v=0.0 m/s at s=",previousPoint[:s]," in CS",csId,".")
end
newPoint[:Δs] = stepSize # step size (in m)
# TODO what is the best default step size for constant v? define Δs or Δt?
newPoint[:Δt] = calc_Δt_with_constant_v(newPoint[:Δs], previousPoint[:v]) # step size (in s)
newPoint[:Δv] = 0.0 # step size (in m/s)
else
newPoint[:Δv] = stepSize * sign(previousPoint[:a]) # step size (in m/s)
newPoint[:Δs] = calc_Δs_with_Δv(newPoint[:Δv], previousPoint[:a], previousPoint[:v]) # step size (in m)
newPoint[:Δt] = calc_Δt_with_Δv(newPoint[:Δv], previousPoint[:a]) # step size (in s)
end
end #if
newPoint[:s] = previousPoint[:s] + newPoint[:Δs] # position (in m)
newPoint[:t] = previousPoint[:t] + newPoint[:Δt] # point in time (in s)
newPoint[:v] = previousPoint[:v] + newPoint[:Δv] # velocity (in m/s)
newPoint[:ΔW] = calc_ΔW(previousPoint[:F_T], newPoint[:Δs]) # mechanical work in this step (in Ws)
newPoint[:W] = previousPoint[:W] + newPoint[:ΔW] # mechanical work (in Ws)
newPoint[:ΔE] = calc_ΔE(newPoint[:ΔW]) # energy consumption in this step (in Ws)
newPoint[:E] = previousPoint[:E] + newPoint[:ΔE] # energy consumption (in Ws)
return newPoint
end #function moveAStep
"""
# if the rear of the train is still located in a former characteristic section it has to be checked if its speed limit can be kept
"""
function getCurrentSpeedLimit(CSs::Vector{Dict}, csWithTrainHeadId::Integer, s::Real, trainLength::Real)
v_limit = CSs[csWithTrainHeadId][:v_limit]
s_exit = CSs[csWithTrainHeadId][:s_exit]
if csWithTrainHeadId > 1 && s -trainLength < CSs[csWithTrainHeadId][:s_entry]
formerCsId = csWithTrainHeadId-1
while formerCsId > 0 && s -trainLength < CSs[formerCsId][:s_exit]
if CSs[formerCsId][:v_limit] < v_limit # TODO: is the position of the train's rear < movingSection[:s_entry], v_limit of the first CS is used
v_limit = CSs[formerCsId][:v_limit]
s_exit = CSs[formerCsId][:s_exit]
end
formerCsId = formerCsId -1
end
end
currentSpeedLimit = Dict(:v => v_limit, :s_end => s_exit + trainLength)
return currentSpeedLimit
end #function getCurrentSpeedLimit
"""
?
"""
function getNextPointOfInterest(pointsOfInterest::Vector{Tuple}, s::Real)
2022-04-28 17:29:24 +02:00
for s_POI in pointsOfInterest
if s_POI[1] > s
2022-04-28 17:29:24 +02:00
return s_POI
end
end
error("ERROR in getNextPointOfInterest: There is no POI higher than s=",s," m.")
end #function getNextPointOfInterest
## This function calculates the data points of the breakFree section.
# Therefore it gets its first data point and the characteristic section and returns the characteristic section including the behavior section for breakFree if needed.
# Info: currently the values of the breakFree section will be calculated like in the accelerating section
2022-05-12 16:32:15 +02:00
function addBreakFreeSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
2022-04-28 17:29:24 +02:00
# conditions for the break free section
endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit] || stateFlags[:endOfCSReached]
trainIsHalting = drivingCourse[end][:v] == 0.0
if trainIsHalting && !endOfCSReached
BS = createBehaviorSection("breakFree", drivingCourse[end][:s], drivingCourse[end][:v], drivingCourse[end][:i])
drivingCourse[end][:behavior] = BS[:type]
# traction effort and resisting forces (in N)
calculateForces!(drivingCourse[end], CSs, CS[:id], "accelerating", train, settings.massModel) # currently the tractive effort is calculated like in the accelerating section
# calculate the breakFree section with calculating the accelerating section and just using the first step and removing the rest
try (CS, drivingCourse, stateFlags) = addAcceleratingSection!(CS, drivingCourse, stateFlags, settings, train, CSs)
catch(acceleratingError)
println("This error happened during the break free phase that is using the accelerating function:")
rethrow(acceleratingError)
end
# delete every dataPoint except the first two
while drivingCourse[end][:i] > drivingCourse[BS[:dataPoints][1]][:i] +1
pop!(drivingCourse)
end
# change the accelerating data to break free
drivingCourse[end-1][:behavior] = BS[:type]
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
# remove the accelerating section from the CS
CS[:t] = CS[:t] - get(CS[:behaviorSections], :accelerating, Dict(:t=>0.0))[:t] # total running time (in s)
CS[:E] = CS[:E] - get(CS[:behaviorSections], :accelerating, Dict(:E=>0.0))[:E] # total energy consumption (in Ws)
delete!(CS[:behaviorSections], :accelerating)
# calculate the accumulated breakFree section information
merge!(BS, Dict(:length => drivingCourse[end][:s] - BS[:s_entry], # total length (in m)
:s_exit => drivingCourse[end][:s], # last position (in m)
:t => drivingCourse[end][:t] - drivingCourse[BS[:dataPoints][1]][:t], # total running time (in s)
:E => drivingCourse[end][:E] - drivingCourse[BS[:dataPoints][1]][:E], # total energy consumption (in Ws)
:v_exit => drivingCourse[end][:v])) # exit speed (in m/s)))
CS[:t] = CS[:t] + BS[:t] # total running time (in s)
CS[:E] = CS[:E] + BS[:E] # total energy consumption (in Ws)
merge!(CS[:behaviorSections], Dict(:breakFree => BS))
end # else: return the characteristic section without a breakFree section
# determine state flags
if haskey(stateFlags, :usedForDefiningCharacteristics) && stateFlags[:usedForDefiningCharacteristics]
s_braking = 0.0
else
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
# reset state flags
stateFlags[:endOfCSReached] = drivingCourse[end][:s] >= CS[:s_exit]
stateFlags[:brakingStartReached] = drivingCourse[end][:s] +s_braking >= CS[:s_exit]
stateFlags[:tractionDeficit] = drivingCourse[end][:F_T] < drivingCourse[end][:F_R] # or add another flag for equal forces?
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0
stateFlags[:previousSpeedLimitReached] = false
stateFlags[:speedLimitReached] = drivingCourse[end][:v] >= CS[:v_limit]
stateFlags[:error] = !(stateFlags[:endOfCSReached] || stateFlags[:brakingStartReached] || stateFlags[:tractionDeficit] || stateFlags[:previousSpeedLimitReached] || stateFlags[:speedLimitReached])
return (CS, drivingCourse, stateFlags)
end #function addBreakFreeSection!
## This function calculates the data points of the clearing section.
# Therefore it gets its previous driving course and the characteristic section and returns the characteristic section and driving course including the clearing section.
2022-05-12 16:32:15 +02:00
function addClearingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
2022-04-28 17:29:24 +02:00
if stateFlags[:previousSpeedLimitReached]
2022-05-12 16:32:15 +02:00
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
2022-04-28 17:29:24 +02:00
if haskey(stateFlags, :usedForDefiningCharacteristics) && stateFlags[:usedForDefiningCharacteristics]
ignoreBraking = true
s_braking = 0.0
else
ignoreBraking = false
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
s_clearing = min(CS[:s_exit]-drivingCourse[end][:s]-s_braking, currentSpeedLimit[:s_end] - drivingCourse[end][:s])
if s_clearing > 0.0
(CS, drivingCourse, stateFlags) = addCruisingSection!(CS, drivingCourse, stateFlags, s_clearing, settings, train, CSs, "clearing")
calculateForces!(drivingCourse[end], CSs, CS[:id], "accelerating", train, settings.massModel)
# stateFlags[:brakingStartReached] = brakingStartReached
# stateFlags[:endOfCSReached] = stateFlags[:endOfCSReached] || drivingCourse[end][:s] == CS[:s_exit]
else
error("ERROR: clearing <=0.0 although it has to be >0.0 in CS ",CS[:id])
end
#stateFlags[:previousSpeedLimitReached] = false
2022-05-12 16:32:15 +02:00
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
2022-04-28 17:29:24 +02:00
stateFlags[:previousSpeedLimitReached] = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v]
else
stateFlags[:error] = true
end
return (CS, drivingCourse, stateFlags)
end #function addClearingSection
## This function calculates the data points of the accelerating section.
# Therefore it gets its previous driving course and the characteristic section and returns the characteristic section and driving course including the accelerating section
2022-05-12 16:32:15 +02:00
function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
#function addAcceleratingSection!(CS::Dict, drivingCourse::Vector{Dict}, settings::Settings, train::Train, CSs::Vector{Dict}, ignoreBraking::Bool)
#=if drivingCourse would also be part of movingSectiong: function addAcceleratingSection!(movingSection::Dict, stateFlags::Dict, csId::Integer, settings::Settings, train::Train)
2022-04-28 17:29:24 +02:00
CSs = movingSection[:characteristicSections]
CS = CSs[csId]
drivingCourse = movingSection[:drivingCourse]=#
calculateForces!(drivingCourse[end], CSs, CS[:id], "accelerating", train, settings.massModel)
if haskey(stateFlags, :usedForDefiningCharacteristics) && stateFlags[:usedForDefiningCharacteristics]
ignoreBraking = true
s_braking = 0.0
else
ignoreBraking = false
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
# conditions for the accelerating section
targetSpeedReached = drivingCourse[end][:v] >= CS[:v_peak] || stateFlags[:speedLimitReached]
endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit] || stateFlags[:endOfCSReached]
tractionSurplus = drivingCourse[end][:F_T] > drivingCourse[end][:F_R]
brakingStartReached = drivingCourse[end][:s] +s_braking >= CS[:s_exit] || stateFlags[:brakingStartReached]
previousSpeedLimitReached = stateFlags[:previousSpeedLimitReached]
# use the conditions for the accelerating section
if !targetSpeedReached && !endOfCSReached && tractionSurplus && !brakingStartReached
BS = createBehaviorSection("accelerating", drivingCourse[end][:s], drivingCourse[end][:v], drivingCourse[end][:i])
drivingCourse[end][:behavior] = BS[:type]
2022-05-12 16:32:15 +02:00
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
2022-04-28 17:29:24 +02:00
previousSpeedLimitReached = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v]
speedLimitReached = drivingCourse[end][:v] >= CS[:v_limit]
#speedLimitReached = drivingCourse[end][:v] > currentSpeedLimit[:v]
#targetSpeedReached = speedLimitReached
while !targetSpeedReached && !endOfCSReached && tractionSurplus && !brakingStartReached && !previousSpeedLimitReached
currentStepSize = settings.stepSize # initialize the step size that can be reduced near intersections
nextPointOfInterest = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
for cycle in 1:settings.approxLevel+1 # first cycle with normal step size followed by cycles with reduced step size depending on the level of approximation
if !ignoreBraking
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
while !targetSpeedReached && !speedLimitReached && !brakingStartReached && !pointOfInterestReached && tractionSurplus && !previousSpeedLimitReached
# 03/08 old: while drivingCourse[end][:v] < CS[:v_peak] && drivingCourse[end][:v] <= currentSpeedLimit[:v] && !brakingStartReached && drivingCourse[end][:s] < nextPointOfInterest[1] && drivingCourse[end][:F_T] > drivingCourse[end][:F_R] # as long as s_i + s_braking < s_CSexit
2022-04-28 17:29:24 +02:00
if drivingCourse[end][:s] >= currentSpeedLimit[:s_end]
# could be asked after creating an data point. This way here prevents even a minimal exceedance of speed limit will be noticed. On the other hand the train cruises possibly a little to long
2022-05-12 16:32:15 +02:00
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
2022-04-28 17:29:24 +02:00
end
# acceleration (in m/s^2):
2022-05-12 16:32:15 +02:00
drivingCourse[end][:a] = calcAcceleration(drivingCourse[end][:F_T], drivingCourse[end][:F_R], train.m_train_full, train.ξ_train)
2022-04-28 17:29:24 +02:00
# create the next data point
push!(drivingCourse, moveAStep(drivingCourse[end], settings.stepVariable, currentStepSize, CS[:id]))
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
calculateForces!(drivingCourse[end], CSs, CS[:id], BS[:type], train, settings.massModel)
# conditions for the next while cycle
if !ignoreBraking
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
brakingStartReached = drivingCourse[end][:s] +s_braking >= CS[:s_exit]
speedLimitReached = drivingCourse[end][:v] > CS[:v_limit]
previousSpeedLimitReached = currentSpeedLimit[:v] < CS[:v_limit] && (drivingCourse[end][:v] > currentSpeedLimit[:v] || (drivingCourse[end][:v] == currentSpeedLimit[:v] && drivingCourse[end][:s] < currentSpeedLimit[:s_end]))
targetSpeedReached = drivingCourse[end][:v] >= CS[:v_peak]
#targetSpeedReached = speedLimitReached
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1] # POIs include s_exit as well
2022-04-28 17:29:24 +02:00
tractionSurplus = drivingCourse[end][:F_T] > drivingCourse[end][:F_R]
end #while
if CS[:id]==0
testFlag = true
else
testFlag = false # for testing
end
# check which limit was reached and adjust the currentStepSize for the next cycle
if cycle < settings.approxLevel+1
if drivingCourse[end][:F_T] <= drivingCourse[end][:F_R]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: F_T=", drivingCourse[end][:F_T]," <= F_R=",drivingCourse[end][:F_R]) # for testing
currentStepSize = settings.stepSize / 10.0^cycle
elseif s_braking > 0.0 && drivingCourse[end][:s] + s_braking > CS[:s_exit]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],",+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing
currentStepSize = settings.stepSize / 10.0^cycle
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: s=", drivingCourse[end][:s]," > nextPOI=",nextPointOfInterest[1]) # for testing
2022-04-28 17:29:24 +02:00
if settings.stepVariable == :distance
currentStepSize = nextPointOfInterest[1] - drivingCourse[end-1][:s]
2022-04-28 17:29:24 +02:00
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:v] > CS[:v_peak]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_peak=",CS[:v_peak]) # for testing
if settings.stepVariable == :speed
currentStepSize = CS[:v_peak]-drivingCourse[end-1][:v]
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:v] > currentSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_limitCurrent=",currentSpeedLimit[:v]) # for testing
if settings.stepVariable == :velocity
currentStepSize = currentSpeedLimit[:v]-drivingCourse[end-1][:v]
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:s] + s_braking == CS[:s_exit]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],",+",s_braking," = ",drivingCourse[end][:s] +s_braking," == s_exit=",CS[:s_exit]) # for testing
if s_braking == 0.0
endOfCSReached = true
end
break
elseif drivingCourse[end][:v] == CS[:v_peak]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," == v_peak=",CS[:v_peak]) # for testing
break
elseif drivingCourse[end][:v] == currentSpeedLimit[:v] && drivingCourse[end][:s] < currentSpeedLimit[:s_end]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," == v_limitCurrent=",currentSpeedLimit[:v]) # for testing
break
elseif drivingCourse[end][:s] == nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: s=", drivingCourse[end][:s]," == nextPOI=",nextPointOfInterest[1]) # for testing
if nextPointOfInterest[1] == CS[:s_exit]
2022-04-28 17:29:24 +02:00
endOfCSReached = true
end
break
else
println("v=",drivingCourse[end][:v]," v_peak= ", CS[:v_peak] , " v_cLimit=", currentSpeedLimit[:v])
println("s=" ,drivingCourse[end][:s]," s_exit=", CS[:s_exit], " s+s_braking=", drivingCourse[end][:s] +s_braking," nextPOI=",nextPointOfInterest[1])
2022-04-28 17:29:24 +02:00
println("F_T=",drivingCourse[end][:F_T] ," F_R=", drivingCourse[end][:F_R])
error("ERROR at accelerating section: With the step variable ",settings.stepVariable," the while loop will be left although v<v_peak and s<s_exit in CS",CS[:id]," with s=" ,drivingCourse[end][:s]," m and v=",drivingCourse[end][:v]," m/s")
end
# delete last data point for recalculating the last step with reduced step size
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next for cycle
brakingStartReached = false
previousSpeedLimitReached = false
speedLimitReached = false
targetSpeedReached = false
endOfCSReached = false
pointOfInterestReached = false
tractionSurplus = true
else # if the level of approximation is reached
if drivingCourse[end][:v] > CS[:v_peak]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_peak=",CS[:v_peak]) # for testing
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next section
brakingStartReached = false
elseif drivingCourse[end][:s] + s_braking > CS[:s_exit]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],",+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing
if s_braking > 0.0
pop!(drivingCourse)
pop!(BS[:dataPoints])
else
drivingCourse[end][:s] = CS[:s_exit] # round s down to CS[:s_exit]
drivingCourse[end][:Δs] = drivingCourse[end][:s] - drivingCourse[end-1][:s]
end
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: s=", drivingCourse[end][:s]," > nextPointOfInterest[1]=",nextPointOfInterest[1]) # for testing
drivingCourse[end][:s] = nextPointOfInterest[1] # round s down to nextPointOfInterest
2022-04-28 17:29:24 +02:00
drivingCourse[end][:Δs] = drivingCourse[end][:s] - drivingCourse[end-1][:s]
elseif drivingCourse[end][:F_T] <= drivingCourse[end][:F_R]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: F_T=", drivingCourse[end][:F_T]," <= F_R=",drivingCourse[end][:F_R]) # for testing
elseif drivingCourse[end][:v] > currentSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," > v_limitCurrent=",currentSpeedLimit[:v]) # for testing
previousSpeedLimitReached = true
pop!(drivingCourse)
pop!(BS[:dataPoints])
else
if drivingCourse[end][:s] + s_braking == CS[:s_exit]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," else case and there: s +s_braking=", drivingCourse[end][:s],",+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing
elseif drivingCourse[end][:v] == currentSpeedLimit[:v]
testFlag && println("in CS",CS[:id]," accelerating cycle",cycle," case: v=", drivingCourse[end][:v]," == v_limitCurrent=",currentSpeedLimit[:v]) # for testing
end
end
# TODO is it possible to put this into to the if-fork?
if drivingCourse[end][:s] == CS[:s_exit]
endOfCSReached = true
end
end
end #for
if drivingCourse[end][:s] == CS[:s_exit]
endOfCSReached = true
end
end #while
if length(BS[:dataPoints]) > 1
# calculate the accumulated accelerating section information
merge!(BS, Dict(:length => drivingCourse[end][:s] - BS[:s_entry], # total length (in m)
:s_exit => drivingCourse[end][:s], # last position (in m)
:t => drivingCourse[end][:t] - drivingCourse[BS[:dataPoints][1]][:t], # total running time (in s)
:E => drivingCourse[end][:E] - drivingCourse[BS[:dataPoints][1]][:E], # total energy consumption (in Ws)
:v_exit => drivingCourse[end][:v])) # exit speed (in m/s)))
# 03/10 old: CS[:v_peak] = max(drivingCourse[end][:v], CS[:v_entry]) # setting v_peak to the last data points velocity which is the highest reachable value in this characteristic section or to v_entry in case it is higher when running on a path with high resistances
CS[:t] = CS[:t] + BS[:t] # total running time (in s)
CS[:E] = CS[:E] + BS[:E] # total energy consumption (in Ws)
mergeBehaviorSection!(CS[:behaviorSections], BS)
end
end
# set state flags
stateFlags[:endOfCSReached] = endOfCSReached
stateFlags[:brakingStartReached] = brakingStartReached
stateFlags[:tractionDeficit] = !(tractionSurplus || drivingCourse[end][:F_T] == drivingCourse[end][:F_R]) # or add another flag for equal forces?
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0
stateFlags[:previousSpeedLimitReached] = previousSpeedLimitReached
stateFlags[:speedLimitReached] = targetSpeedReached
stateFlags[:error] = !(endOfCSReached || brakingStartReached || stateFlags[:tractionDeficit] || previousSpeedLimitReached || targetSpeedReached)
return (CS, drivingCourse, stateFlags)
end #function addAcceleratingSection!
## This function calculates the data points of the cruising section.
# Therefore it gets its first data point and the characteristic section and returns the characteristic section including the behavior section for cruising if needed.
2022-05-12 16:32:15 +02:00
function addCruisingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, s_cruising::Real, settings::Settings, train::Train, CSs::Vector{Dict}, cruisingType::String)
2022-04-28 17:29:24 +02:00
trainIsClearing = cruisingType == "clearing"
trainIsBrakingDownhill = cruisingType == "downhillBraking"
# traction effort and resisting forces (in N)
if !trainIsBrakingDownhill # TODO: or just give BS[:type] instead of "cruising"/"braking"?
calculateForces!(drivingCourse[end], CSs, CS[:id], "cruising", train, settings.massModel)
else
calculateForces!(drivingCourse[end], CSs, CS[:id], "braking", train, settings.massModel)
end
if haskey(stateFlags, :usedForDefiningCharacteristics) && stateFlags[:usedForDefiningCharacteristics]
ignoreBraking = true
s_braking = 0.0
else
ignoreBraking = false
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
# conditions for cruising section
#s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
brakingStartReached = drivingCourse[end][:s] + s_braking >= CS[:s_exit] || stateFlags[:brakingStartReached]
speedIsValid = drivingCourse[end][:v]>0.0 && drivingCourse[end][:v]<=CS[:v_peak]
tractionDeficit = drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
targetPositionReached = s_cruising == 0.0
resistingForceNegative = drivingCourse[end][:F_R] < 0
#println(" vor if speedIsValid=",speedIsValid ," brakingStartReached=", brakingStartReached," tractionDeficit=", tractionDeficit," targetPositionReached=", targetPositionReached)
if speedIsValid && !brakingStartReached && !tractionDeficit && !targetPositionReached
# 03/04 old: if drivingCourse[end][:v]>0.0 && drivingCourse[end][:v]<=CS[:v_peak] && !brakingStartReached && drivingCourse[end][:F_T] >= drivingCourse[end][:F_R]
BS = createBehaviorSection(cruisingType, drivingCourse[end][:s], drivingCourse[end][:v], drivingCourse[end][:i])
drivingCourse[end][:behavior] = BS[:type]
# TODO: necessary?
s_cruising = min(s_cruising, CS[:s_exit]-BS[:s_entry])
# traction effort and resisting forces (in N)
#03/25 calculateForces!(drivingCourse[end], CSs, CS[:id], "cruising", train, settings.massModel)
if !trainIsBrakingDownhill
calculateForces!(drivingCourse[end], CSs, CS[:id], "cruising", train, settings.massModel)
else
calculateForces!(drivingCourse[end], CSs, CS[:id], "braking", train, settings.massModel)
end
if settings.massModel == :homogeneous_strip && CS[:id] > 1
# conditions for cruising section
2022-05-12 16:32:15 +02:00
trainInPreviousCS = drivingCourse[end][:s] < CS[:s_entry] + train.length
2022-04-28 17:29:24 +02:00
targetPositionReached = drivingCourse[end][:s] >= BS[:s_entry] +s_cruising
resistingForceNegative = drivingCourse[end][:F_R] < 0.0
# targetSpeedReached = stateFlags[:speedLimitReached] || drivingCourse[end][:v] >= CS[:v_peak]
# TODO: change? to correctCruisingType = (trainIsClearing || (trainIsBrakingDownhill == drivingCourse[end][:F_R] < 0)) # while clearing tractive or braking force can be used
#&& targetSpeedReached
# use the conditions for the cruising section
while trainInPreviousCS && !targetPositionReached && !tractionDeficit && (trainIsClearing || (trainIsBrakingDownhill == resistingForceNegative)) # while clearing tractive or braking force can be used
currentStepSize = settings.stepSize
nextPointOfInterest[1] = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
for cycle in 1:settings.approxLevel+1 # first cycle with normal step size followed by cycles with reduced step size depending on the level of approximation
while trainInPreviousCS && !targetPositionReached && !pointOfInterestReached && !tractionDeficit && (trainIsClearing || (trainIsBrakingDownhill == resistingForceNegative)) # while clearing tractive or braking force can be used
2022-05-12 16:32:15 +02:00
# 03/09 old: while drivingCourse[end][:s] < CS[:s_entry] + train.length && drivingCourse[end][:s] < BS[:s_entry] +s_cruising && drivingCourse[end][:s] < nextPointOfInterest[1] && drivingCourse[end][:F_T]>=drivingCourse[end][:F_R]
2022-04-28 17:29:24 +02:00
# the tractive effort is lower than the resisiting forces and the train has use the highest possible effort to try to stay at v_peak OR the mass model homogeneous strip is used and parts of the train are still in former CS
#TODO: maybe just consider former CS with different path resistance?
# tractive effort (in N):
#03/25 drivingCourse[end][:F_T] = min(drivingCourse[end][:F_T], max(0.0, drivingCourse[end][:F_R]))
if !trainIsBrakingDownhill
drivingCourse[end][:F_T] = min(drivingCourse[end][:F_T], max(0.0, drivingCourse[end][:F_R]))
else
drivingCourse[end][:F_T] = 0.0
end
# acceleration (in m/s^2):
drivingCourse[end][:a] = 0.0
# create the next data point
if settings.stepVariable == :distance || settings.stepVariable == time
push!(drivingCourse, moveAStep(drivingCourse[end], settings.stepVariable, currentStepSize, CS[:id]))
else
2022-05-12 16:32:15 +02:00
push!(drivingCourse, moveAStep(drivingCourse[end], position, train.length/(10.0^cycle), CS[:id])) # TODO which step size should be used?
2022-04-28 17:29:24 +02:00
end
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
# traction effort and resisting forces (in N)
calculateForces!(drivingCourse[end], CSs, CS[:id], "default", train, settings.massModel)
# calculateForces!(drivingCourse[end], CSs, CS[:id], "cruising", train, settings.massModel)
#if !trainIsBrakingDownhill
# calculateForces!(drivingCourse[end], CSs, CS[:id], "cruising", train, settings.massModel)
#else
# calculateForces!(drivingCourse[end], CSs, CS[:id], "braking", train, settings.massModel)
#end
# conditions for the next while cycle
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1] # POIs include s_exit as well
2022-04-28 17:29:24 +02:00
tractionDeficit = drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
targetPositionReached = drivingCourse[end][:s] >= BS[:s_entry] +s_cruising
2022-05-12 16:32:15 +02:00
trainInPreviousCS = drivingCourse[end][:s] < CS[:s_entry] + train.length
2022-04-28 17:29:24 +02:00
resistingForceNegative = drivingCourse[end][:F_R] < 0.0
end #while
# check which limit was reached and adjust the currentStepSize for the next cycle
if cycle < settings.approxLevel+1
if drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
currentStepSize = settings.stepSize / 10.0^cycle
elseif !trainIsBrakingDownhill && resistingForceNegative
currentStepSize = settings.stepSize / 10.0^cycle
elseif trainIsBrakingDownhill && !resistingForceNegative
currentStepSize = settings.stepSize / 10.0^cycle
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
if settings.stepVariable == :distance
currentStepSize = nextPointOfInterest[1] - drivingCourse[end-1][:s]
2022-04-28 17:29:24 +02:00
else
currentStepSize = settings.stepSize / 10.0^cycle
end
2022-05-12 16:32:15 +02:00
elseif drivingCourse[end][:s] > BS[:s_entry] + s_cruising # TODO also the following? drivingCourse[end][:s] > CSs[CS[:id]][:s_entry] + train.length))
2022-04-28 17:29:24 +02:00
if settings.stepVariable == :distance
currentStepSize=BS[:s_entry] + s_cruising-drivingCourse[end-1][:s]
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:s] == BS[:s_entry] + s_cruising # || drivingCourse[end][:s]==CS[:s_exit]
break
2022-05-12 16:32:15 +02:00
elseif drivingCourse[end][:s] >= CS[:s_entry] + train.length
2022-04-28 17:29:24 +02:00
break
elseif drivingCourse[end][:s] == nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
break
elseif !trainInPreviousCS
break
else
error("ERROR at cruising section: With the step variable ",settings.stepVariable," the while loop will be left although the if cases don't apply in CS",CS[:id]," with s=" ,drivingCourse[end][:s]," m and v=",drivingCourse[end][:v]," m/s")
end
# delete last data point for recalculating the last step with reduced step size
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next for cycle
pointOfInterestReached = false
tractionDeficit = false
targetPositionReached = false
trainInPreviousCS = true
resistingForceNegative = drivingCourse[end][:F_R] < 0.0
else # if the level of approximation is reached
if drivingCourse[end][:s] > nextPointOfInterest[1]
drivingCourse[end][:s] = nextPointOfInterest[1] # round s down to nextPointOfInterest
2022-04-28 17:29:24 +02:00
drivingCourse[end][:Δs] = drivingCourse[end][:s] - drivingCourse[end-1][:s]
elseif drivingCourse[end][:s] > BS[:s_entry]+s_cruising
if BS[:type] != "clearing"
pop!(drivingCourse)
pop!(BS[:dataPoints])
end
elseif drivingCourse[end][:s] == BS[:s_entry]+s_cruising
break
elseif drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
break
elseif !trainIsBrakingDownhill && resistingForceNegative
break
elseif trainIsBrakingDownhill && !resistingForceNegative
break
elseif !trainInPreviousCS
break
else
end
end
end #for
end #while
end #if
# conditions for the next while cycle
targetPositionReached = drivingCourse[end][:s] >= BS[:s_entry] +s_cruising
tractionDeficit = drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
resistingForceNegative = drivingCourse[end][:F_R] < 0.0
while !targetPositionReached && !tractionDeficit && (trainIsClearing || (trainIsBrakingDownhill == resistingForceNegative)) # while clearing tractive or braking force can be used
# 03/09 old: while drivingCourse[end][:s] < BS[:s_entry]+s_cruising && drivingCourse[end][:F_T] >= drivingCourse[end][:F_R]
nextPointOfInterest = min(BS[:s_entry]+s_cruising, getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])[1])
2022-04-28 17:29:24 +02:00
# tractive effort (in N):
#03/25 drivingCourse[end][:F_T] = min(drivingCourse[end][:F_T], max(0.0, drivingCourse[end][:F_R]))
if !trainIsBrakingDownhill
drivingCourse[end][:F_T] = min(drivingCourse[end][:F_T], max(0.0, drivingCourse[end][:F_R]))
else
drivingCourse[end][:F_T] = 0.0
end
drivingCourse[end][:a] = 0.0 # acceleration (in m/s^2)
# calculate the remaining cruising way
#s_cruisingRemaining=BS[:s_entry] + s_cruising-drivingCourse[end][:s]
s_cruisingRemaining = min(nextPointOfInterest[1] -drivingCourse[end][:s], BS[:s_entry] +s_cruising -drivingCourse[end][:s])
2022-04-28 17:29:24 +02:00
# create the next data point
push!(drivingCourse, moveAStep(drivingCourse[end], :distance, s_cruisingRemaining, CS[:id]))
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
calculateForces!(drivingCourse[end], CSs, CS[:id], "default", train, settings.massModel)
# calculateForces!(drivingCourse[end], CSs, CS[:id], "cruising", train, settings.massModel)
#if !trainIsBrakingDownhill
# calculateForces!(drivingCourse[end], CSs, CS[:id], "cruising", train, settings.massModel)
#else
# calculateForces!(drivingCourse[end], CSs, CS[:id], "braking", train, settings.massModel)
#end
# conditions for the next while cycle
targetPositionReached = drivingCourse[end][:s] >= BS[:s_entry] +s_cruising
tractionDeficit = drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
resistingForceNegative = drivingCourse[end][:F_R] < 0
end #while
# TODO: realize this better inside the upper loops?
# calculate the accumulated cruising section information
merge!(BS, Dict(:length => drivingCourse[end][:s] - BS[:s_entry], # total length (in m)
:s_exit => drivingCourse[end][:s], # last position (in m)
:t => drivingCourse[end][:t] - drivingCourse[BS[:dataPoints][1]][:t], # total running time (in s)
:E => drivingCourse[end][:E] - drivingCourse[BS[:dataPoints][1]][:E], # total energy consumption (in Ws)
:v_exit => drivingCourse[end][:v])) # exit speed (in m/s)))
CS[:t] = CS[:t] + BS[:t] # total running time (in s)
CS[:E] = CS[:E] + BS[:E] # total energy consumption (in Ws)
mergeBehaviorSection!(CS[:behaviorSections], BS)
end # else: return the characteristic section without a cruising section
# set state flags
stateFlags[:endOfCSReached] = drivingCourse[end][:s] == CS[:s_exit]
if !ignoreBraking
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
stateFlags[:brakingStartReached] = brakingStartReached || drivingCourse[end][:s] + s_braking >= CS[:s_exit]
stateFlags[:tractionDeficit] = tractionDeficit
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0.0
2022-05-12 16:32:15 +02:00
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
2022-04-28 17:29:24 +02:00
stateFlags[:previousSpeedLimitReached] = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v]
stateFlags[:error] = !(targetPositionReached || tractionDeficit || !(cruisingType == "clearing" || ((cruisingType == "downhillBraking") == resistingForceNegative)))
return (CS, drivingCourse, stateFlags)
end #function addCruisingSection!
## This function calculates the data points for diminishing run when using maximum tractive effort and still getting slower
2022-05-12 16:32:15 +02:00
function addDiminishingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
2022-04-28 17:29:24 +02:00
calculateForces!(drivingCourse[end], CSs, CS[:id], "diminishing", train, settings.massModel)
if haskey(stateFlags, :usedForDefiningCharacteristics) && stateFlags[:usedForDefiningCharacteristics]
ignoreBraking = true
s_braking = 0.0
else
ignoreBraking = false
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
# conditions for diminishing section
targetSpeedReached = drivingCourse[end][:v] <= 0.0
endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit] || stateFlags[:endOfCSReached]
tractionDeficit = drivingCourse[end][:F_T] < drivingCourse[end][:F_R] #|| stateFlags[:tractionDeficit]
#s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
brakingStartReached = drivingCourse[end][:s] + s_braking >= CS[:s_exit] || stateFlags[:brakingStartReached]
# use the conditions for the diminishing section
if tractionDeficit && !targetSpeedReached && !endOfCSReached
BS = createBehaviorSection("diminishing", drivingCourse[end][:s], drivingCourse[end][:v], drivingCourse[end][:i])
drivingCourse[end][:behavior] = BS[:type]
while tractionDeficit && !targetSpeedReached && !endOfCSReached && !brakingStartReached
currentStepSize=settings.stepSize # initialize the step size that can be reduced near intersections
nextPointOfInterest = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])[1]
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
for cycle in 1:settings.approxLevel+1 # first cycle with normal step size followed by cycles with reduced step size depending on the level of approximation
while tractionDeficit && !brakingStartReached && !pointOfInterestReached && !targetSpeedReached
# 03/09 old: while drivingCourse[end][:F_T] < drivingCourse[end][:F_R] && !brakingStartReached && drivingCourse[end][:s] < nextPointOfInterest[1] && drivingCourse[end][:v]>0.0 # as long as s_i + s_braking < s_end
2022-04-28 17:29:24 +02:00
# acceleration (in m/s^2):
2022-05-12 16:32:15 +02:00
drivingCourse[end][:a] = calcAcceleration(drivingCourse[end][:F_T], drivingCourse[end][:F_R], train.m_train_full, train.ξ_train)
2022-04-28 17:29:24 +02:00
# create the next data point
push!(drivingCourse, moveAStep(drivingCourse[end], settings.stepVariable, currentStepSize, CS[:id]))
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
calculateForces!(drivingCourse[end], CSs, CS[:id], BS[:type], train, settings.massModel)
# conditions for the next while cycle
if !ignoreBraking
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
end
brakingStartReached = drivingCourse[end][:s] +s_braking >= CS[:s_exit]
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
targetSpeedReached = drivingCourse[end][:v] <= 0.0
tractionDeficit = drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
endOfCSReached = drivingCourse[end][:s] == CS[:s_exit]
end #while
if CS[:id]==0
testFlag = true
else
testFlag = false # for testing
end
# check which limit was reached and adjust the currentStepSize for the next cycle
if cycle < settings.approxLevel+1
if drivingCourse[end][:v] < 0.0
if settings.stepVariable == velocity
currentStepSize = drivingCourse[end-1][:v]
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:F_T] > drivingCourse[end][:F_R]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: F_T=", drivingCourse[end][:F_T]," > F_R=",drivingCourse[end][:F_R]) # for testing
currentStepSize = settings.stepSize / 10.0^cycle
elseif s_braking > 0.0 && drivingCourse[end][:s] + s_braking > CS[:s_exit]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],"+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing
currentStepSize = settings.stepSize / 10.0^cycle
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: s=", drivingCourse[end][:s]," > nextPOI=",nextPointOfInterest[1]) # for testing
2022-04-28 17:29:24 +02:00
if settings.stepVariable == :distance
currentStepSize = nextPointOfInterest[1] - drivingCourse[end-1][:s]
2022-04-28 17:29:24 +02:00
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:s] + s_braking == CS[:s_exit]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],"+",s_braking," = ",drivingCourse[end][:s] +s_braking," == s_exit=",CS[:s_exit]) # for testing
break
elseif drivingCourse[end][:s] == nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: s=", drivingCourse[end][:s]," == nextPOI=",nextPointOfInterest[1]) # for testing
2022-04-28 17:29:24 +02:00
break
elseif drivingCourse[end][:F_T] == drivingCourse[end][:F_R]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: F_T=", drivingCourse[end][:F_T]," == F_R=",drivingCourse[end][:F_R]) # for testing
break
elseif drivingCourse[end][:v] == 0.0
error("ERROR: The train stops during diminishing run in CS",CS[:id]," at position s=",drivingCourse[end][:s]," m because the maximum tractive effort is lower than the resistant forces.",
" Before the stop the last point has the values s=",drivingCourse[end-1][:s]," m v=",drivingCourse[end-1][:v]," m/s a=",drivingCourse[end-1][:a]," m/s^2",
" F_T=",drivingCourse[end-1][:F_T]," N R_traction=",drivingCourse[end-1][:R_traction]," N R_wagons=",drivingCourse[end-1][:R_wagons]," N R_path=",drivingCourse[end-1][:R_path]," N.")
else
error("ERROR during diminishing run: With the step variable ",settings.stepVariable," the while loop will be left although s+s_braking<s_exit && v>0.0 in CS",CS[:id]," with s=" ,drivingCourse[end][:s]," m and v=",drivingCourse[end][:v]," m/s")
end
# delete last data point for recalculating the last step with reduced step size
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next for cycle
brakingStartReached = false
pointOfInterestReached = false
targetSpeedReached = false
tractionDeficit = true
endOfCSReached = false
else # if the level of approximation is reached
if drivingCourse[end][:v] <= 0.0
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: v=", drivingCourse[end][:v]," <= 0.0") # for testing
# push!(BS[:dataPoints], drivingCourse[end][:i])
error("ERROR: The train stops during diminishing run in CS",CS[:id]," because the maximum tractive effort is lower than the resistant forces.",
" Before the stop the last point has the values s=",drivingCourse[end-1][:s]," m v=",drivingCourse[end-1][:v]," m/s a=",drivingCourse[end-1][:a]," m/s^2",
" F_T=",drivingCourse[end-1][:F_T]," N R_traction=",drivingCourse[end-1][:R_traction]," N R_wagons=",drivingCourse[end-1][:R_wagons]," N R_path=",drivingCourse[end-1][:R_path]," N.")
elseif s_braking > 0.0 && drivingCourse[end][:s] + s_braking > CS[:s_exit]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],"+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing
pop!(drivingCourse)
pop!(BS[:dataPoints])
pointOfInterestReached = false
targetSpeedReached = false
tractionDeficit = true
endOfCSReached = false
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: s=", drivingCourse[end][:s]," > nextPointOfInterest[1]=",nextPointOfInterest[1]) # for testing
drivingCourse[end][:s] = nextPointOfInterest[1] # round s down to nextPointOfInterest
2022-04-28 17:29:24 +02:00
drivingCourse[end][:Δs] = drivingCourse[end][:s] - drivingCourse[end-1][:s]
elseif drivingCourse[end][:F_T] >= drivingCourse[end][:F_R]
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: F_T=", drivingCourse[end][:F_T]," >= F_R=", drivingCourse[end][:F_R]) # for testing
break
else
testFlag && println("in CS",CS[:id]," diminishing cycle",cycle," case: else with v=", drivingCourse[end][:v]," > 0.0 and F_T=", drivingCourse[end][:F_T]," <= F_R=", drivingCourse[end][:F_R]) # for testing
#println(" and s +s_braking=", drivingCourse[end][:s],"+",s_braking," = ",drivingCourse[end][:s] +s_braking," <= s_exit=",CS[:s_exit]) # for testing
#println(" and s=", drivingCourse[end][:s]," <= nextPointOfInterest[1]=",nextPointOfInterest[1]) # for testing
2022-04-28 17:29:24 +02:00
# if drivingCourse[end][:s] + s_braking == CS[:s_exit]
# brakingStartReached = true
# end
end #if
# # TODO is it possible to put this into to the if-fork?
# if drivingCourse[end][:s] == CS[:s_exit]
# endOfCSReached = true
# end
end #if
end #for
end #while
if length(BS[:dataPoints]) > 1 # TODO: necessary? May it be possible that there is no diminishing because braking has to start?
# calculate the accumulated diminishing section information
merge!(BS, Dict(:length => drivingCourse[end][:s] - BS[:s_entry], # total length (in m)
:s_exit => drivingCourse[end][:s], # last position (in m)
:t => drivingCourse[end][:t] - drivingCourse[BS[:dataPoints][1]][:t], # total running time (in s)
:E => drivingCourse[end][:E] - drivingCourse[BS[:dataPoints][1]][:E], # total energy consumption (in Ws)
:v_exit => drivingCourse[end][:v])) # exit speed (in m/s)))
CS[:t] = CS[:t] + BS[:t] # total running time (in s)
CS[:E] = CS[:E] + BS[:E] # total energy consumption (in Ws)
mergeBehaviorSection!(CS[:behaviorSections], BS)
end
end
# set state flags
stateFlags[:endOfCSReached] = endOfCSReached
stateFlags[:brakingStartReached] = brakingStartReached
stateFlags[:tractionDeficit] = tractionDeficit
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0
stateFlags[:speedLimitReached] = drivingCourse[end][:v] >= CS[:v_peak]
stateFlags[:error] = !(endOfCSReached || brakingStartReached || !tractionDeficit)
return (CS, drivingCourse, stateFlags)
end #function addDiminishingSection!
## This function calculates the data points of the coasting section.
# Therefore it gets its previous driving course and the characteristic section and returns the characteristic section and driving course including the coasting section
2022-05-12 16:32:15 +02:00
function addCoastingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
2022-04-28 17:29:24 +02:00
# TODO: if the rear of the train is still located in a former characteristic section it has to be checked if its speed limit can be kept
# with getCurrentSpeedLimit
# conditions for coasting section
targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit]
endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit] || stateFlags[:endOfCSReached]
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
brakingStartReached = drivingCourse[end][:s] + s_braking >= CS[:s_exit] || stateFlags[:brakingStartReached]
# use the conditions for the coasting section
if !targetSpeedReached && !endOfCSReached
BS = createBehaviorSection("coasting", drivingCourse[end][:s], drivingCourse[end][:v], drivingCourse[end][:i])
drivingCourse[end][:behavior] = BS[:type]
while !targetSpeedReached && !endOfCSReached && !brakingStartReached
currentStepSize=settings.stepSize # initialize the step size that can be reduced near intersections
nextPointOfInterest[1] = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
for cycle in 1:settings.approxLevel+1 # first cycle with normal step size followed by cycles with reduced step size depending on the level of approximation
while !targetSpeedReached && !brakingStartReached && !pointOfInterestReached
# 03/09 old : while drivingCourse[end][:v] > CS[:v_exit] && drivingCourse[end][:v] <= CS[:v_peak] && !brakingStartReached && drivingCourse[end][:s] < nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
# traction effort and resisting forces (in N):
calculateForces!(drivingCourse[end], CSs, CS[:id], BS[:type], train, settings.massModel)
# acceleration (in m/s^2):
2022-05-12 16:32:15 +02:00
drivingCourse[end][:a] = calcAcceleration(drivingCourse[end][:F_T], drivingCourse[end][:F_R], train.m_train_full, train.ξ_train)
2022-04-28 17:29:24 +02:00
# create the next data point
push!(drivingCourse, moveAStep(drivingCourse[end], settings.stepVariable, currentStepSize, CS[:id]))
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
# conditions for the next while cycle
s_braking = calcBrakingDistance(drivingCourse[end][:v], CS[:v_exit], train.a_braking, settings.approxLevel)
2022-04-28 17:29:24 +02:00
brakingStartReached = drivingCourse[end][:s] + s_braking >= CS[:s_exit]
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit] || drivingCourse[end][:v] > CS[:v_peak]
end # while
testFlag = false
# check which limit was reached and adjust the currentStepSize for the next cycle
if cycle < settings.approxLevel+1
if drivingCourse[end][:s] + s_braking > CS[:s_exit]
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],"+",s_braking," = ",drivingCourse[end][:s] +s_braking," > s_exit=",CS[:s_exit]) # for testing
currentStepSize = settings.stepSize / 10.0^cycle
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: s=", drivingCourse[end][:s]," > nextPointOfInterest[1]=",nextPointOfInterest[1]) # for testing
2022-04-28 17:29:24 +02:00
if settings.stepVariable == :distance
currentStepSize = nextPointOfInterest[1] - drivingCourse[end-1][:s]
2022-04-28 17:29:24 +02:00
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:v] < CS[:v_exit] # TODO: if accelereation and coasting functions will be combined this case is only for coasting
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: v=", drivingCourse[end][:v]," < v_exit=", CS[:v_exit]) # for testing
if settings.stepVariable == velocity
currentStepSize = drivingCourse[end-1][:v] - CS[:v_exit]
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:v] > CS[:v_peak]
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: v=", drivingCourse[end][:v]," > v_peak=", CS[:v_peak]) # for testing
if settings.stepVariable == velocity
currentStepSize = CS[:v_peak] - drivingCourse[end-1][:v]
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:s] + s_braking == CS[:s_exit]
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: s +s_braking=", drivingCourse[end][:s],"+",s_braking," = ",drivingCourse[end][:s] +s_braking," == s_exit=",CS[:s_exit]) # for testing
break
elseif drivingCourse[end][:v] == CS[:v_exit]
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: v=", drivingCourse[end][:v]," == v_exit=", CS[:v_exit]) # for testing
break
elseif drivingCourse[end][:s] == nextPointOfInterest[1]
testFlag && println("in CS",CS[:id]," coasting cycle",cycle," case: s =", drivingCourse[end][:s]," > nextPointOfInterest[1]=",nextPointOfInterest[1]) # for testing
2022-04-28 17:29:24 +02:00
break
else
# TODO: not needed. just for testing
error("ERROR at coasting until braking section: With the step variable ",settings.stepVariable," the while loop will be left although v<v_peak and s+s_braking<s_exit in CS",CS[:id]," with s=" ,drivingCourse[end][:s]," m and v=",drivingCourse[end][:v]," m/s")
end
# delete last data point for recalculating the last step with reduced step size
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next for cycle
brakingStartReached = false
pointOfInterestReached = false
targetSpeedReached = false
else # if the level of approximation is reached
if drivingCourse[end][:v] <= 0.0
println("INFO: The train stops during the coasting section in CS",CS[:id]," ",
" Before the stop the last point has the values s=",drivingCourse[end-1][:s]," m v=",drivingCourse[end-1][:v]," m/s a=",drivingCourse[end-1][:a]," m/s^2",
" F_T=",drivingCourse[end-1][:F_T]," N R_traction=",drivingCourse[end-1][:R_traction]," N R_wagons=",drivingCourse[end-1][:R_wagons]," N R_path=",drivingCourse[end-1][:R_path]," N and s_braking=",s_braking,"m.")
elseif drivingCourse[end][:s] + s_braking > CS[:s_exit]
# delete last data point because it went to far
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next for cycle
# brakingStartReached = true
pointOfInterestReached = false
targetSpeedReached = false
elseif drivingCourse[end][:v] > CS[:v_peak] # if the train gets to fast it has to brake # TODO: if accelereation and coasting functions will be combined this case is different for coasting and also the order of if cases is different
# delete last data point because it went to far
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next for cycle
brakingStartReached = false
pointOfInterestReached = false
# targetSpeedReached = true
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
drivingCourse[end][:s] = nextPointOfInterest[1] # round s down to nextPointOfInterest
2022-04-28 17:29:24 +02:00
drivingCourse[end][:Δs] = drivingCourse[end][:s] - drivingCourse[end-1][:s]
else
# do nothing for example for drivingCourse[end][:s] + s_braking == CS[:s_exit]
end
end
end #for
end #while
stateFlags[:speedLimitReached] = false
# calculate the accumulated coasting section information
merge!(BS, Dict(:length => drivingCourse[end][:s] - BS[:s_entry], # total length (in m)
:s_exit => drivingCourse[end][:s], # last position (in m)
:t => drivingCourse[end][:t] - drivingCourse[BS[:dataPoints][1]][:t], # total running time (in s)
:E => drivingCourse[end][:E] - drivingCourse[BS[:dataPoints][1]][:E], # total energy consumption (in Ws)
:v_exit => drivingCourse[end][:v])) # exit speed (in m/s)))
CS[:t] = CS[:t] + BS[:t] # total running time (in s)
CS[:E] = CS[:E] + BS[:E] # total energy consumption (in Ws)
merge!(CS[:behaviorSections], Dict(:coasting=>BS))
end
# set state flags
stateFlags[:endOfCSReached] = endOfCSReached
stateFlags[:brakingStartReached] = brakingStartReached
stateFlags[:tractionDeficit] = drivingCourse[end][:F_T] < drivingCourse[end][:F_R]
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0
stateFlags[:error] = !(endOfCSReached || brakingStartReached || stateFlags[:tractionDeficit] || previousSpeedLimitReached || targetSpeedReached)
return (CS, drivingCourse, stateFlags)
end #function addCoastingSection!
## This function calculates the data points of the braking section.
# Therefore it gets its first data point and the characteristic section and returns the characteristic section including the behavior section for braking if needed.
2022-05-12 16:32:15 +02:00
function addBrakingSection!(CS::Dict, drivingCourse::Vector{Dict}, stateFlags::Dict, settings::Settings, train::Train, CSs::Vector{Dict})
2022-04-28 17:29:24 +02:00
# conditions for braking section
targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit]
endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit] || stateFlags[:endOfCSReached]
# use the conditions for the braking section
if !targetSpeedReached && !endOfCSReached
BS = createBehaviorSection("braking", drivingCourse[end][:s], drivingCourse[end][:v], drivingCourse[end][:i])
drivingCourse[end][:behavior] = BS[:type]
while !targetSpeedReached && !endOfCSReached
currentStepSize = settings.stepSize # initialize the step size that can be reduced near intersections
nextPointOfInterest = getNextPointOfInterest(CS[:pointsOfInterest], drivingCourse[end][:s])
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
for cycle in 1:settings.approxLevel+1 # first cycle with normal step size followed by cycles with reduced step size depending on the level of approximation
while !targetSpeedReached && !endOfCSReached && !pointOfInterestReached
# 03/09 old: while drivingCourse[end][:v] > CS[:v_exit] && !targetSpeedReached && drivingCourse[end][:s] < CS[:s_exit] && drivingCourse[end][:s] < nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
# traction effort and resisting forces (in N):
calculateForces!(drivingCourse[end], CSs, CS[:id], BS[:type], train, settings.massModel)
# acceleration (in m/s^2):
2022-05-12 16:32:15 +02:00
drivingCourse[end][:a] = train.a_braking
2022-04-28 17:29:24 +02:00
# TODO or: drivingCourse[end][:a] = calcBrakingAcceleration(drivingCourse[end][:v], CS[:v_exit], CS[:s_exit]-drivingCourse[end][:s])
if settings.stepVariable == :distance && ((drivingCourse[end][:v]/drivingCourse[end][:a])^2+2*currentStepSize/drivingCourse[end][:a])<0.0 || (drivingCourse[end][:v]^2+2*currentStepSize*drivingCourse[end][:a])<0.0
# create empty data point and set it for the values of s_exit and v_exit
push!(drivingCourse, createDataPoint())
drivingCourse[end][:i] = drivingCourse[end-1][:i]+1
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], CS[:v_exit])
else
# create the next data point
push!(drivingCourse, moveAStep(drivingCourse[end], settings.stepVariable, currentStepSize, CS[:id]))
drivingCourse[end][:behavior] = BS[:type]
push!(BS[:dataPoints], drivingCourse[end][:i])
end
#println(drivingCourse[end][:i],". s=",drivingCourse[end][:s]," s_exit=", CS[:s_exit]," v_exit=", CS[:v_exit]," v=",drivingCourse[end][:v])
# conditions for the next while cycle
pointOfInterestReached = drivingCourse[end][:s] >= nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
endOfCSReached = drivingCourse[end][:s] >= CS[:s_exit]
targetSpeedReached = drivingCourse[end][:v] <= CS[:v_exit]
end # while
# check which limit was reached and adjust the currentStepSize for the next cycle
# TODO: is there a better way than rounding like in the following?
if cycle < settings.approxLevel+1
if drivingCourse[end][:v] < CS[:v_exit]
if settings.stepVariable == :velocity
2022-04-28 17:29:24 +02:00
currentStepSize = drivingCourse[end-1][:v] - CS[:v_exit]
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
if settings.stepVariable == :distance
currentStepSize = nextPointOfInterest[1] - drivingCourse[end-1][:s]
2022-04-28 17:29:24 +02:00
else
currentStepSize = settings.stepSize / 10.0^cycle
end
elseif drivingCourse[end][:v] == CS[:v_exit] && drivingCourse[end][:s] == CS[:s_exit]
break
elseif drivingCourse[end][:v] == CS[:v_exit]
recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], CS[:v_exit])
endOfCSReached = true
# println(" with a=", drivingCourse[end-1][:a]) # for testing
break
elseif drivingCourse[end][:s] == CS[:s_exit]
# println("during braking section in CS",CS[:id],": rounding v down from ", drivingCourse[end][:v] ," to ", CS[:v_exit]) # for testing
recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], CS[:v_exit])
targetSpeedReached = true
# println(" with a=", drivingCourse[end-1][:a]) # for testing
break
elseif drivingCourse[end][:s] == nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
break
end
# delete last data point for recalculating the last step with reduced step size
pop!(drivingCourse)
pop!(BS[:dataPoints])
# conditions for the next for cycle
pointOfInterestReached = false
endOfCSReached = false
targetSpeedReached = false
else # if the level of approximation is reached
if drivingCourse[end][:v] < 0.0
# TODO: drivingCourse[end][:v] < CS[:v_exit] should be enough
# reset last point with setting v=v_exit
# println("during braking section in CS",CS[:id],": rounding v up from ", drivingCourse[end][:v] ," to ", CS[:v_exit]) # for testing
recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], 0.0)
endOfCSReached = true
break
elseif drivingCourse[end][:s] > CS[:s_exit]
# println("during braking section in CS",CS[:id],": rounding s down from ", drivingCourse[end][:s] ," to ", CS[:s_exit]) # for testing
# recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], CS[:v_exit])
drivingCourse[end][:s] = CS[:s_exit]
break
elseif drivingCourse[end][:s] > nextPointOfInterest[1]
drivingCourse[end][:s] = nextPointOfInterest[1] # round s down to nextPointOfInterest
2022-04-28 17:29:24 +02:00
drivingCourse[end][:Δs] = drivingCourse[end][:s] - drivingCourse[end-1][:s]
break
elseif drivingCourse[end][:v] == CS[:v_exit] && drivingCourse[end][:s] == CS[:s_exit]
break
elseif drivingCourse[end][:v] < CS[:v_exit]
# reset last point with setting v=v_exit
# println("during braking section in CS",CS[:id],": rounding s up from ", drivingCourse[end][:s] ," to ", CS[:s_exit]) # for testing
recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], CS[:v_exit])
endOfCSReached = true
break
elseif drivingCourse[end][:v] == CS[:v_exit]
# println("during braking section in CS",CS[:id],": rounding s up from ", drivingCourse[end][:s] ," to ", CS[:s_exit]) # for testing
recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], CS[:v_exit])
endOfCSReached = true
break
elseif drivingCourse[end][:s] == CS[:s_exit]
# println("during braking section in CS",CS[:id],": rounding v down from ", drivingCourse[end][:v] ," to ", CS[:v_exit]) # for testing
recalculateLastBrakingPoint!(drivingCourse, CS[:s_exit], CS[:v_exit])
targetSpeedReached = true
break
else
# do nothing for example for drivingCourse[end][:s]==nextPointOfInterest[1]
2022-04-28 17:29:24 +02:00
end
end
end #for
end #while
# calculate the accumulated coasting section information
merge!(BS, Dict(:length => drivingCourse[end][:s] - BS[:s_entry], # total length (in m)
:s_exit => drivingCourse[end][:s], # last position (in m)
:t => drivingCourse[end][:t] - drivingCourse[BS[:dataPoints][1]][:t], # total running time (in s)
:E => drivingCourse[end][:E] - drivingCourse[BS[:dataPoints][1]][:E], # total energy consumption (in Ws)
:v_exit => drivingCourse[end][:v])) # exit speed (in m/s)))
CS[:t] = CS[:t] + BS[:t] # total running time (in s)
CS[:E] = CS[:E] + BS[:E] # total energy consumption (in Ws)
merge!(CS[:behaviorSections], Dict(:braking=>BS))
end # else: return the characteristic section without a braking section
# set state flags
2022-05-12 16:32:15 +02:00
currentSpeedLimit = getCurrentSpeedLimit(CSs, CS[:id], drivingCourse[end][:s], train.length)
2022-04-28 17:29:24 +02:00
stateFlags[:previousSpeedLimitReached] = currentSpeedLimit[:v] != CS[:v_limit] && drivingCourse[end][:v] >= currentSpeedLimit[:v]
stateFlags[:speedLimitReached] = drivingCourse[end][:v] >= CS[:v_exit]
stateFlags[:endOfCSReached] = endOfCSReached
stateFlags[:error] = !(endOfCSReached)
calculateForces!(drivingCourse[end], CSs, CS[:id], "default", train, settings.massModel)
stateFlags[:resistingForceNegative] = drivingCourse[end][:F_R] < 0
return (CS, drivingCourse, stateFlags)
end #function addBrakingSection!
## This function calculates the data point of the standstill.
# Therefore it gets its first data point and the characteristic section and returns the characteristic section including the standstill if needed.
2022-05-12 16:32:15 +02:00
function addStandstill!(CS::Dict, drivingCourse::Vector{Dict}, settings::Settings, train::Train, CSs::Vector{Dict})
2022-04-28 17:29:24 +02:00
if drivingCourse[end][:v] == 0.0
BS = createBehaviorSection("standstill", drivingCourse[end][:s], drivingCourse[end][:v], drivingCourse[end][:i])
merge!(BS, Dict(:length => 0.0, # total length (in m)
:t => 0.0, # total running time (in s)
:E => 0.0, # total energy consumption (in Ws)
:s_exit => drivingCourse[end][:s], # last position (in m)
:v_exit => drivingCourse[end][:v])) # exit speed (in m/s)))
drivingCourse[end][:behavior] = BS[:type]
# traction effort and resisting forces (in N)
calculateForces!(drivingCourse[end], CSs, CS[:id], BS[:type], train, settings.massModel)
merge!(CS[:behaviorSections], Dict(:standstill => BS))
end # else: return the characteristic section without a standstillSection section
return (CS, drivingCourse)
end #function addStandstill!
function mergeBehaviorSection!(BSs::Dict, BS::Dict)
if !haskey(BSs, Symbol(BS[:type]))
merge!(BSs, Dict(Symbol(BS[:type]) => BS))
else
number = "2"
while haskey(BSs, Symbol(BS[:type]*number))
number = string(parse(Int, number)+1)
end
merge!(BSs, Dict(Symbol(BS[:type]*number) => BS))
# println("INFO: The ",number,". ",BS[:type]," section has been created. ! ! ! ! ! ! ! ! !")
end
return BSs
end #function mergeBehaviorSection!
function recalculateLastBrakingPoint!(drivingCourse, s_target, v_target)
currentPoint = drivingCourse[end]
previousPoint = drivingCourse[end-1]
# set s and v
currentPoint[:s] = s_target # position (in m)
currentPoint[:v] = v_target # velocity (in m/s)
currentPoint[:Δs] = currentPoint[:s] - previousPoint[:s] # step size (in m)
currentPoint[:Δv] = currentPoint[:v] - previousPoint[:v] # step size (in m/s)
# calculate other values
previousPoint[:a] = calcBrakingAcceleration(previousPoint[:v], currentPoint[:v], currentPoint[:Δs])
# # TODO: just for testing
2022-05-12 16:32:15 +02:00
# if previousPoint[:a]<train.a_braking || previousPoint[:a]>=0.0
# println("Warning: a_braking gets to high in CS ",CS[:id], " with a=",previousPoint[:a] ," > ",train.a_braking)
2022-04-28 17:29:24 +02:00
# end
currentPoint[:Δt] = calc_Δt_with_Δv(currentPoint[:Δv], previousPoint[:a]) # step size (in s)
currentPoint[:t] = previousPoint[:t] + currentPoint[:Δt] # point in time (in s)
currentPoint[:ΔW] = 0.0 # mechanical work in this step (in Ws)
currentPoint[:W] = previousPoint[:W] + currentPoint[:ΔW] # mechanical work (in Ws)
currentPoint[:ΔE] = currentPoint[:ΔW] # energy consumption in this step (in Ws)
currentPoint[:E] = previousPoint[:E] + currentPoint[:ΔE] # energy consumption (in Ws)
end #function recalculateLastBrakingPoint