

Contents

II.	Challenges	4
1.	First Stage 1.1. Introduction to Driving Dynamics	
2.	Second Stage 2.1. Block Segmentation	7 7 8
3.	Third Stage 3.1. Route Locking	10
	3.3. Dual protection points	11

Aim and Materials

The aim of the learning game is to simulate and experience the driving dynamics of trains in the context of block division. This requires:

- two trains with different driving dynamics
- a track consisting of spaces
- train berths
- signals for block division
- if necessary, turnouts

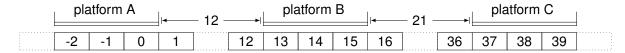
Real continuous dimensions time (t) and distance (s) are assigned to discrete units of laps (t) and spaces (s). Thus, the simulation is round-based in order to imitate the steps of a computer.

Version 0.7.2 from 2019-09-20

This work is licensed under a Creative Commons License (CC BY 4.0).

Part II.

Challenges


1. First Stage

1.1. Introduction to Driving Dynamics

Setup

A train is to run on a single track. You need:

- infrastructure as shown below
- train on field 0 towards 39.

Task 1.1

The train stands still and has its control-lever at 0 km/h.

- a) If the train accelerates as much as possible, where can it get in nine laps?
- b) How many laps are needed minimally, if the train stops at every platform?

The train passes the first platform and has its control-lever on maximum speed.

c) How many laps are needed if the train shall leave the track completely without stopping? Note the solution steps in a protocol!

1.2. Visibility and Braking Distance

Setup

Unknown line with different visibility conditions:

Visibility	range in fields
Very good	3
Normal	2
Bad	1

Task 1.2

- a) What is the maximum speed for a train in order to stop in front of an obstacle with very good visibility?
- b) How many laps does it take to get safely into a 12 fields away station under normal visibility conditions?
- c) How far (in fields) would you have to be able to see in order to drive 160 km/h?

2. Second Stage

2.1. Block Segmentation

Setup

Different trains should be able to run consecutively on a track with block logic! You need:

- a track of any length,
- 3 complete blocks with distant signal, main signal and a block clearing point,
- at least one train.

Task 2.1

- a) Place distant signals, main signals, and block clearing points in such a way that bad visibility does not lead to impairment and trains can run with $160 \, \text{km/h!}$
- b) What is the minimum and maximum block distance?
- c) What happens if the distance of the main signals are less than the minimum block distance?
- d) How many laps does the blocking time for running through a block last (signal watch time, approach time, time between block signals, clearing time)?

2.2. Traffic Flow

Setup

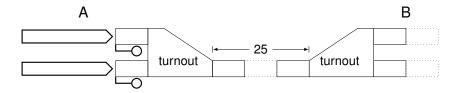
Different trains should be able to run consecutively on a track with block logic! You need:

- Two different trains with different train dynamics,
- The track from section 2.1.

Trains enter the system at the beginning of the track; trains exit the system at the end of the track. The infrastructure before and after the line is neglected.

Task 2.2

- a) How many laps are needed from the first train entering to the second train leaving if both trains are to run unimpeded and the *fast* runs in front of the *slow* train?
- b) How many laps are needed from the first train entering to the second train leaving if both trains are to run unimpeded and the *slow* runs in front of the *fast* train?


3. Third Stage

3.1. Route Locking

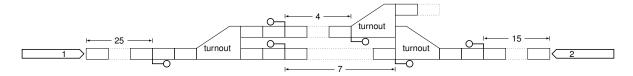
Setup

The sequence of trains between two stations with turnouts should be examined! You need:

- Infrastructure as shown below with at least two complete blocks,
- Two different trains with different vehicle dynamics in station A.

The turnouts may only be passed at 80 km/h along the branching track. The speed in the straight track is not limited.

Task 3.1


- a) Complete the infrastructure with distant signals, block signals, route signals, block clearing points and route clearing points!
- b) Pick a train to leave and explain why not the other one!
- c) How many laps does it take for the second train to depart?
- d) How many laps does it take for both trains (sum of the laps of train 1 and train 2) to arrive at the destination station?

3.2. Overlap

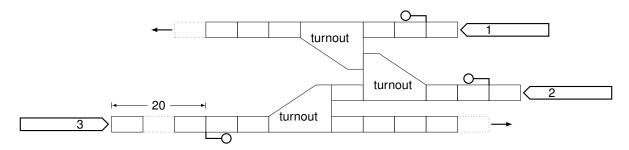
Setup

Two trains are too cross in a station! You need:

- Infrastructure as shown below with at least two complete blocks,
- two different trains with different vehicle dynamics running at maximum speed,
- train 1 runs non-stop; train 2 has a service stop of 2 laps at the station.

The turnouts may be passed at $80 \,\mathrm{km/h}$ at the branching track. The overlap requires 2 fields.

Task 3.2


- a) Complete the infrastructure with distant signals, block signals, route signals, block clearing points and route clearing points!
- b) Decide which train to run on which track. Which problems can occur?
- c) After how many laps did train 2 stop at the station?
- d) After how many laps did train 1 leave the station completely?
- e) Make a locking plan of the station!

3.3. Dual protection points

Setup

Trains meet in a station with a dual protection points. You need:

- Infrastructure as shown below (right-hand traffic),
- three trains: train 1 and 2 standing; train 3 running at maximum speed.

Task 3.3

- a) Lock the route for train 1!
- b) Lock the route for train 3!
- c) Lock the route for train 2 after train 1 has left the station. What is the problem? How can it be solved?

Revision History

Revision	Date	Author(s)	Description
0.1	2018-04-17	MS, FN, LG	First prototype created with driving dynamics
0.2	2018-05-15	MS, LG	Educational game with block logic extended
0.3	2018-09-03	MS	Handbook created
0.3.1	2018-10-17	MS	Handbook with neutral design
0.4	2018-11-16	MS, LE, SZ	Translation into english
0.5	2019-03-29	MS	Minor improvements and craft sheets
0.5.1	2019-03-29	MS	Adaptation of track length and tasks
0.6	2019-05-20	MS	Added routes and route locking
0.6.1	2019-08-26	MS, LP	Extended tasks for routes
0.7	2019-09-09	MS, LP	reworking of game mechanics together with tasks
			and figures
0.7.1	2019-09-17	MS	Adapted signals for left- and right-hand traffic
0.7.2	2019-09-20	MS	Added tasks in English from version 0.6.1

Felix Nebel (FN), Laura Enders (LE), Lukas Gruber (LG), Leonhard Pelster (LP), Martin Scheidt (MS), Stephan Zieger (SZ)